predict_rec.py 6.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
D
dyning 已提交
18
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
        image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_image_shape = image_shape
D
dyning 已提交
33
        self.character_type = args.rec_char_type
34
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
35
        self.rec_algorithm = args.rec_algorithm
L
LDOUBLEV 已提交
36 37 38
        char_ops_params = {}
        char_ops_params["character_type"] = args.rec_char_type
        char_ops_params["character_dict_path"] = args.rec_char_dict_path
T
tink2123 已提交
39 40
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
T
tink2123 已提交
41
            self.loss_type = 'ctc'
T
tink2123 已提交
42 43
        else:
            char_ops_params['loss_type'] = 'attention'
T
tink2123 已提交
44
            self.loss_type = 'attention'
L
LDOUBLEV 已提交
45 46
        self.char_ops = CharacterOps(char_ops_params)

47
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
48
        imgC, imgH, imgW = self.rec_image_shape
D
dyning 已提交
49 50
        if self.character_type == "ch":
            imgW = int(32 * max_wh_ratio)
L
LDOUBLEV 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
        rec_res = []
70
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
71 72 73 74
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
75
            max_wh_ratio = 0
L
LDOUBLEV 已提交
76
            for ino in range(beg_img_no, end_img_no):
77 78 79 80 81
                h, w = img_list[ino].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
L
LDOUBLEV 已提交
82 83 84 85 86 87 88
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
T
tink2123 已提交
89

T
tink2123 已提交
90
            if self.loss_type == "ctc":
T
tink2123 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    rec_res.append([preds_text, score])
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
T
tink2123 已提交
113 114
                elapse = time.time() - starttime
                predict_time += elapse
T
tink2123 已提交
115 116 117 118 119 120 121 122 123 124 125
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
                    rec_res.append([preds_text, score])

L
LDOUBLEV 已提交
126 127 128 129 130
        return rec_res, predict_time


if __name__ == "__main__":
    args = utility.parse_args()
D
dyning 已提交
131
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
132 133 134 135 136 137 138 139 140 141
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
T
tink2123 已提交
142 143
    try:
        rec_res, predict_time = text_recognizer(img_list)
T
tink2123 已提交
144 145
    except Exception as e:
        print(e)
T
tink2123 已提交
146
        logger.info(
T
tink2123 已提交
147 148 149 150
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
T
tink2123 已提交
151
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
T
tink2123 已提交
152
        exit()
L
LDOUBLEV 已提交
153 154 155 156
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))