rec_resnet_aster.py 4.5 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tink2123 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
"""
T
tink2123 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
import paddle
import paddle.nn as nn

import sys
import math


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2D(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias_attr=False)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2D(
        in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)


def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
    # [n_position]
    positions = paddle.arange(0, n_position)
    # [feat_dim]
    dim_range = paddle.arange(0, feat_dim)
    dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
    # [n_position, feat_dim]
    angles = paddle.unsqueeze(
        positions, axis=1) / paddle.unsqueeze(
            dim_range, axis=0)
    angles = paddle.cast(angles, "float32")
    angles[:, 0::2] = paddle.sin(angles[:, 0::2])
    angles[:, 1::2] = paddle.cos(angles[:, 1::2])
    return angles


class AsterBlock(nn.Layer):
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(AsterBlock, self).__init__()
        self.conv1 = conv1x1(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2D(planes)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2D(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


class ResNet_ASTER(nn.Layer):
    """For aster or crnn"""

    def __init__(self, with_lstm=True, n_group=1, in_channels=3):
        super(ResNet_ASTER, self).__init__()
        self.with_lstm = with_lstm
        self.n_group = n_group

        self.layer0 = nn.Sequential(
            nn.Conv2D(
                in_channels,
                32,
                kernel_size=(3, 3),
                stride=1,
                padding=1,
                bias_attr=False),
            nn.BatchNorm2D(32),
            nn.ReLU())

        self.inplanes = 32
        self.layer1 = self._make_layer(32, 3, [2, 2])  # [16, 50]
        self.layer2 = self._make_layer(64, 4, [2, 2])  # [8, 25]
        self.layer3 = self._make_layer(128, 6, [2, 1])  # [4, 25]
        self.layer4 = self._make_layer(256, 6, [2, 1])  # [2, 25]
        self.layer5 = self._make_layer(512, 3, [2, 1])  # [1, 25]

        if with_lstm:
            self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
            self.out_channels = 2 * 256
        else:
            self.out_channels = 512

    def _make_layer(self, planes, blocks, stride):
        downsample = None
        if stride != [1, 1] or self.inplanes != planes:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))

        layers = []
        layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
        self.inplanes = planes
        for _ in range(1, blocks):
            layers.append(AsterBlock(self.inplanes, planes))
        return nn.Sequential(*layers)

    def forward(self, x):
        x0 = self.layer0(x)
        x1 = self.layer1(x0)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        x5 = self.layer5(x4)

        cnn_feat = x5.squeeze(2)  # [N, c, w]
        cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
        if self.with_lstm:
            rnn_feat, _ = self.rnn(cnn_feat)
            return rnn_feat
        else:
A
add vl  
andyjpaddle 已提交
143
            return cnn_feat