rec_resnet_aster.py 7.8 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tink2123 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/resnet_aster.py
"""
T
tink2123 已提交
18 19 20 21 22
import paddle
import paddle.nn as nn

import sys
import math
A
add vl  
andyjpaddle 已提交
23 24 25 26
from paddle.nn.initializer import KaimingNormal, Constant

zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
T
tink2123 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2D(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias_attr=False)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2D(
        in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)


def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000):
    # [n_position]
    positions = paddle.arange(0, n_position)
    # [feat_dim]
    dim_range = paddle.arange(0, feat_dim)
    dim_range = paddle.pow(wave_length, 2 * (dim_range // 2) / feat_dim)
    # [n_position, feat_dim]
    angles = paddle.unsqueeze(
        positions, axis=1) / paddle.unsqueeze(
            dim_range, axis=0)
    angles = paddle.cast(angles, "float32")
    angles[:, 0::2] = paddle.sin(angles[:, 0::2])
    angles[:, 1::2] = paddle.cos(angles[:, 1::2])
    return angles


class AsterBlock(nn.Layer):
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(AsterBlock, self).__init__()
        self.conv1 = conv1x1(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2D(planes)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2D(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


class ResNet_ASTER(nn.Layer):
    """For aster or crnn"""

    def __init__(self, with_lstm=True, n_group=1, in_channels=3):
        super(ResNet_ASTER, self).__init__()
        self.with_lstm = with_lstm
        self.n_group = n_group

        self.layer0 = nn.Sequential(
            nn.Conv2D(
                in_channels,
                32,
                kernel_size=(3, 3),
                stride=1,
                padding=1,
                bias_attr=False),
            nn.BatchNorm2D(32),
            nn.ReLU())

        self.inplanes = 32
        self.layer1 = self._make_layer(32, 3, [2, 2])  # [16, 50]
        self.layer2 = self._make_layer(64, 4, [2, 2])  # [8, 25]
        self.layer3 = self._make_layer(128, 6, [2, 1])  # [4, 25]
        self.layer4 = self._make_layer(256, 6, [2, 1])  # [2, 25]
        self.layer5 = self._make_layer(512, 3, [2, 1])  # [1, 25]

        if with_lstm:
            self.rnn = nn.LSTM(512, 256, direction="bidirect", num_layers=2)
            self.out_channels = 2 * 256
        else:
            self.out_channels = 512

    def _make_layer(self, planes, blocks, stride):
        downsample = None
        if stride != [1, 1] or self.inplanes != planes:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))

        layers = []
        layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
        self.inplanes = planes
        for _ in range(1, blocks):
            layers.append(AsterBlock(self.inplanes, planes))
        return nn.Sequential(*layers)

    def forward(self, x):
        x0 = self.layer0(x)
        x1 = self.layer1(x0)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        x5 = self.layer5(x4)

        cnn_feat = x5.squeeze(2)  # [N, c, w]
        cnn_feat = paddle.transpose(cnn_feat, perm=[0, 2, 1])
        if self.with_lstm:
            rnn_feat, _ = self.rnn(cnn_feat)
            return rnn_feat
        else:
            return cnn_feat
A
add vl  
andyjpaddle 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254


class Block(nn.Layer):
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Block, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = nn.BatchNorm2D(planes)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = nn.BatchNorm2D(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


class ResNet45(nn.Layer):
    def __init__(self, in_channels=3, compress_layer=False):
        super(ResNet45, self).__init__()
        self.compress_layer = compress_layer

        self.conv1_new = nn.Conv2D(
            in_channels,
            32,
            kernel_size=(3, 3),
            stride=1,
            padding=1,
            bias_attr=False)
        self.bn1 = nn.BatchNorm2D(32)
        self.relu = nn.ReLU()

        self.inplanes = 32
        self.layer1 = self._make_layer(32, 3, [2, 2])  # [32, 128]
        self.layer2 = self._make_layer(64, 4, [2, 2])  # [16, 64]
        self.layer3 = self._make_layer(128, 6, [2, 2])  # [8, 32]
        self.layer4 = self._make_layer(256, 6, [1, 1])  # [8, 32]
        self.layer5 = self._make_layer(512, 3, [1, 1])  # [8, 32]

        if self.compress_layer:
            self.layer6 = nn.Sequential(
                nn.Conv2D(
                    512, 256, kernel_size=(3, 1), padding=(0, 0), stride=(1,
                                                                          1)),
                nn.BatchNorm(256),
                nn.ReLU())
            self.out_channels = 256
        else:
            self.out_channels = 512

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Conv2D):
            KaimingNormal(m.weight)
        elif isinstance(m, nn.BatchNorm):
            ones_(m.weight)
            zeros_(m.bias)

    def _make_layer(self, planes, blocks, stride):
        downsample = None
        if stride != [1, 1] or self.inplanes != planes:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes, stride), nn.BatchNorm2D(planes))

        layers = []
        layers.append(Block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes
        for _ in range(1, blocks):
            layers.append(Block(self.inplanes, planes))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1_new(x)
        x = self.bn1(x)
        x = self.relu(x)
        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        x5 = self.layer5(x4)

        if not self.compress_layer:
            return x5
        else:
            x6 = self.layer6(x5)
            return x6


if __name__ == '__main__':
    model = ResNet45()
    x = paddle.rand([1, 3, 64, 256])
    x = paddle.to_tensor(x)
    print(x.shape)
    out = model(x)
    print(out.shape)