infer_kie.py 5.2 KB
Newer Older
L
add kie  
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.nn.functional as F

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
L
add ips  
LDOUBLEV 已提交
36
from ppocr.utils.save_load import load_model
L
add kie  
LDOUBLEV 已提交
37
import tools.program as program
L
add ips  
LDOUBLEV 已提交
38
import time
L
add kie  
LDOUBLEV 已提交
39 40 41 42 43 44 45 46 47 48 49 50


def read_class_list(filepath):
    dict = {}
    with open(filepath, "r") as f:
        lines = f.readlines()
        for line in lines:
            key, value = line.split(" ")
            dict[key] = value.rstrip()
    return dict


L
LDOUBLEV 已提交
51 52 53
def draw_kie_result(batch, node, idx_to_cls, count):
    img = batch[6].copy()
    boxes = batch[7]
L
add kie  
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    h, w = img.shape[:2]
    pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
    max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1)
    node_pred_label = max_idx.numpy().tolist()
    node_pred_score = max_value.numpy().tolist()

    for i, box in enumerate(boxes):
        if i >= len(node_pred_label):
            break
        new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
                   [box[0], box[3]]]
        Pts = np.array([new_box], np.int32)
        cv2.polylines(
            img, [Pts.reshape((-1, 1, 2))],
            True,
            color=(255, 255, 0),
            thickness=1)
        x_min = int(min([point[0] for point in new_box]))
        y_min = int(min([point[1] for point in new_box]))

        pred_label = str(node_pred_label[i])
        if pred_label in idx_to_cls:
            pred_label = idx_to_cls[pred_label]
        pred_score = '{:.2f}'.format(node_pred_score[i])
        text = pred_label + '(' + pred_score + ')'
        cv2.putText(pred_img, text, (x_min * 2, y_min),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
    vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
    vis_img[:, :w] = img
    vis_img[:, w:] = pred_img
L
add ips  
LDOUBLEV 已提交
84 85
    save_kie_path = os.path.dirname(config['Global'][
        'save_res_path']) + "/kie_results/"
L
LDOUBLEV 已提交
86 87 88 89 90
    if not os.path.exists(save_kie_path):
        os.makedirs(save_kie_path)
    save_path = os.path.join(save_kie_path, str(count) + ".png")
    cv2.imwrite(save_path, vis_img)
    logger.info("The Kie Image saved in {}".format(save_path))
L
add kie  
LDOUBLEV 已提交
91 92 93 94 95 96 97


def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])
L
add ips  
LDOUBLEV 已提交
98
    load_model(config, model)
L
add kie  
LDOUBLEV 已提交
99 100 101 102 103 104

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        transforms.append(op)

L
LDOUBLEV 已提交
105 106
    data_dir = config['Eval']['dataset']['data_dir']

L
add kie  
LDOUBLEV 已提交
107 108 109 110 111 112 113 114 115
    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    class_path = config['Global']['class_path']
    idx_to_cls = read_class_list(class_path)
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
L
add ips  
LDOUBLEV 已提交
116 117 118

    warmup_times = 0
    count_t = []
L
add kie  
LDOUBLEV 已提交
119 120 121
    with open(save_res_path, "wb") as fout:
        with open(config['Global']['infer_img'], "rb") as f:
            lines = f.readlines()
L
LDOUBLEV 已提交
122
            for index, data_line in enumerate(lines):
L
add ips  
LDOUBLEV 已提交
123 124
                if index == 10:
                    warmup_t = time.time()
L
add kie  
LDOUBLEV 已提交
125 126
                data_line = data_line.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
L
LDOUBLEV 已提交
127
                img_path, label = data_dir + "/" + substr[0], substr[1]
L
add kie  
LDOUBLEV 已提交
128 129 130 131
                data = {'img_path': img_path, 'label': label}
                with open(data['img_path'], 'rb') as f:
                    img = f.read()
                    data['image'] = img
L
add ips  
LDOUBLEV 已提交
132
                st = time.time()
L
add kie  
LDOUBLEV 已提交
133 134 135 136 137 138
                batch = transform(data, ops)
                batch_pred = [0] * len(batch)
                for i in range(len(batch)):
                    batch_pred[i] = paddle.to_tensor(
                        np.expand_dims(
                            batch[i], axis=0))
L
add ips  
LDOUBLEV 已提交
139
                st = time.time()
L
LDOUBLEV 已提交
140
                node, edge = model(batch_pred)
L
add kie  
LDOUBLEV 已提交
141
                node = F.softmax(node, -1)
L
add ips  
LDOUBLEV 已提交
142
                count_t.append(time.time() - st)
L
LDOUBLEV 已提交
143
                draw_kie_result(batch, node, idx_to_cls, index)
L
add kie  
LDOUBLEV 已提交
144
    logger.info("success!")
L
add ips  
LDOUBLEV 已提交
145 146 147 148
    logger.info("It took {} s for predict {} images.".format(
        np.sum(count_t), len(count_t)))
    ips = np.sum(count_t[warmup_times:]) / len(count_t[warmup_times:])
    logger.info("The ips is {} images/s".format(ips))
L
add kie  
LDOUBLEV 已提交
149 150 151 152 153


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()