infer_kie.py 4.8 KB
Newer Older
L
add kie  
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.nn.functional as F

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.utils.save_load import init_model
import tools.program as program


def read_class_list(filepath):
    dict = {}
    with open(filepath, "r") as f:
        lines = f.readlines()
        for line in lines:
            key, value = line.split(" ")
            dict[key] = value.rstrip()
    return dict


L
LDOUBLEV 已提交
50 51 52
def draw_kie_result(batch, node, idx_to_cls, count):
    img = batch[6].copy()
    boxes = batch[7]
L
add kie  
LDOUBLEV 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    h, w = img.shape[:2]
    pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
    max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1)
    node_pred_label = max_idx.numpy().tolist()
    node_pred_score = max_value.numpy().tolist()

    for i, box in enumerate(boxes):
        if i >= len(node_pred_label):
            break
        new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
                   [box[0], box[3]]]
        Pts = np.array([new_box], np.int32)
        cv2.polylines(
            img, [Pts.reshape((-1, 1, 2))],
            True,
            color=(255, 255, 0),
            thickness=1)
        x_min = int(min([point[0] for point in new_box]))
        y_min = int(min([point[1] for point in new_box]))

        pred_label = str(node_pred_label[i])
        if pred_label in idx_to_cls:
            pred_label = idx_to_cls[pred_label]
        pred_score = '{:.2f}'.format(node_pred_score[i])
        text = pred_label + '(' + pred_score + ')'
        cv2.putText(pred_img, text, (x_min * 2, y_min),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
    vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
    vis_img[:, :w] = img
    vis_img[:, w:] = pred_img
L
LDOUBLEV 已提交
83 84
    save_kie_path = os.path.dirname(config['Global'][
        'save_res_path']) + "/kie_results/"
L
LDOUBLEV 已提交
85 86 87 88 89
    if not os.path.exists(save_kie_path):
        os.makedirs(save_kie_path)
    save_path = os.path.join(save_kie_path, str(count) + ".png")
    cv2.imwrite(save_path, vis_img)
    logger.info("The Kie Image saved in {}".format(save_path))
L
add kie  
LDOUBLEV 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103


def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])
    init_model(config, model, logger)

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        transforms.append(op)

L
LDOUBLEV 已提交
104 105
    data_dir = config['Eval']['dataset']['data_dir']

L
add kie  
LDOUBLEV 已提交
106 107 108 109 110 111 112 113 114 115 116 117
    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    class_path = config['Global']['class_path']
    idx_to_cls = read_class_list(class_path)
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
    with open(save_res_path, "wb") as fout:
        with open(config['Global']['infer_img'], "rb") as f:
            lines = f.readlines()
L
LDOUBLEV 已提交
118
            for index, data_line in enumerate(lines):
L
add kie  
LDOUBLEV 已提交
119 120
                data_line = data_line.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
L
LDOUBLEV 已提交
121
                img_path, label = data_dir + "/" + substr[0], substr[1]
L
add kie  
LDOUBLEV 已提交
122 123 124 125 126 127 128 129 130 131
                data = {'img_path': img_path, 'label': label}
                with open(data['img_path'], 'rb') as f:
                    img = f.read()
                    data['image'] = img
                batch = transform(data, ops)
                batch_pred = [0] * len(batch)
                for i in range(len(batch)):
                    batch_pred[i] = paddle.to_tensor(
                        np.expand_dims(
                            batch[i], axis=0))
L
LDOUBLEV 已提交
132 133

                node, edge = model(batch[0], batch[1:])
L
add kie  
LDOUBLEV 已提交
134
                node = F.softmax(node, -1)
L
LDOUBLEV 已提交
135
                draw_kie_result(batch, node, idx_to_cls, index)
L
add kie  
LDOUBLEV 已提交
136 137 138 139 140 141
    logger.info("success!")


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()