ocr_rec.cpp 6.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {
文幕地方's avatar
文幕地方 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
                         std::vector<double> *times) {
  std::chrono::duration<float> preprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> inference_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> postprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

  int img_num = img_list.size();
  std::vector<float> width_list;
  for (int i = 0; i < img_num; i++) {
    width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
  }
  std::vector<int> indices = Utility::argsort(width_list);

  for (int beg_img_no = 0; beg_img_no < img_num;
       beg_img_no += this->rec_batch_num_) {
    auto preprocess_start = std::chrono::steady_clock::now();
    int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
    float max_wh_ratio = 0;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      int h = img_list[indices[ino]].rows;
      int w = img_list[indices[ino]].cols;
      float wh_ratio = w * 1.0 / h;
      max_wh_ratio = max(max_wh_ratio, wh_ratio);
M
MissPenguin 已提交
45
    }
文幕地方's avatar
文幕地方 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    int batch_width = 0;
    std::vector<cv::Mat> norm_img_batch;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      cv::Mat srcimg;
      img_list[indices[ino]].copyTo(srcimg);
      cv::Mat resize_img;
      this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
                           this->use_tensorrt_);
      this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                              this->is_scale_);
      norm_img_batch.push_back(resize_img);
      batch_width = max(resize_img.cols, batch_width);
    }

    std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
    this->permute_op_.Run(norm_img_batch, input.data());
    auto preprocess_end = std::chrono::steady_clock::now();
    preprocess_diff += preprocess_end - preprocess_start;

    // Inference.
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
    auto inference_start = std::chrono::steady_clock::now();
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();

    std::vector<float> predict_batch;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
    auto predict_shape = output_t->shape();

    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                  std::multiplies<int>());
    predict_batch.resize(out_num);

    output_t->CopyToCpu(predict_batch.data());
    auto inference_end = std::chrono::steady_clock::now();
    inference_diff += inference_end - inference_start;

    // ctc decode
    auto postprocess_start = std::chrono::steady_clock::now();
    for (int m = 0; m < predict_shape[0]; m++) {
      std::vector<std::string> str_res;
      int argmax_idx;
      int last_index = 0;
      float score = 0.f;
      int count = 0;
      float max_value = 0.0f;

      for (int n = 0; n < predict_shape[1]; n++) {
        argmax_idx = int(Utility::argmax(
            &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
        max_value = float(*std::max_element(
            &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));

        if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
          score += max_value;
          count += 1;
          str_res.push_back(label_list_[argmax_idx]);
M
MissPenguin 已提交
108
        }
文幕地方's avatar
文幕地方 已提交
109 110 111 112 113 114 115 116 117
        last_index = argmax_idx;
      }
      score /= count;
      if (isnan(score))
        continue;
      for (int i = 0; i < str_res.size(); i++) {
        std::cout << str_res[i];
      }
      std::cout << "\tscore: " << score << std::endl;
W
WenmuZhou 已提交
118
    }
文幕地方's avatar
文幕地方 已提交
119 120 121 122 123 124
    auto postprocess_end = std::chrono::steady_clock::now();
    postprocess_diff += postprocess_end - postprocess_start;
  }
  times->push_back(double(preprocess_diff.count() * 1000));
  times->push_back(double(inference_diff.count() * 1000));
  times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126
}

littletomatodonkey's avatar
littletomatodonkey 已提交
127
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
L
LDOUBLEV 已提交
128 129
  //   AnalysisConfig config;
  paddle_infer::Config config;
文幕地方's avatar
文幕地方 已提交
130 131
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey 已提交
132

littletomatodonkey's avatar
littletomatodonkey 已提交
133 134
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
L
LDOUBLEV 已提交
135
    if (this->use_tensorrt_) {
M
MissPenguin 已提交
136 137 138 139
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
文幕地方's avatar
文幕地方 已提交
140
      if (this->precision_ == "int8") {
M
MissPenguin 已提交
141
        precision = paddle_infer::Config::Precision::kInt8;
文幕地方's avatar
文幕地方 已提交
142 143
      }
      config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
M
MissPenguin 已提交
144

L
LDOUBLEV 已提交
145
      std::map<std::string, std::vector<int>> min_input_shape = {
文幕地方's avatar
文幕地方 已提交
146
          {"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}};
L
LDOUBLEV 已提交
147
      std::map<std::string, std::vector<int>> max_input_shape = {
文幕地方's avatar
文幕地方 已提交
148
          {"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}};
L
LDOUBLEV 已提交
149
      std::map<std::string, std::vector<int>> opt_input_shape = {
文幕地方's avatar
文幕地方 已提交
150
          {"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}};
L
LDOUBLEV 已提交
151 152 153

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
L
LDOUBLEV 已提交
154
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
155 156
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey 已提交
157 158
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
W
WenmuZhou 已提交
159 160
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey 已提交
161
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
162 163
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey 已提交
164

L
LDOUBLEV 已提交
165
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey 已提交
166
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey 已提交
167
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey 已提交
168 169 170 171

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
文幕地方's avatar
文幕地方 已提交
172
  //   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey 已提交
173

L
LDOUBLEV 已提交
174
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey 已提交
175 176
}

L
littletomatodonkey 已提交
177
} // namespace PaddleOCR