ocr_rec.cpp 7.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {
M
MissPenguin 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) {
    std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
    std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
    std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

    int img_num = img_list.size();
    std::vector<float> width_list;
    for (int i = 0; i < img_num; i++) {
        width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
    }
    std::vector<int> indices = Utility::argsort(width_list);

    for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) {
        auto preprocess_start = std::chrono::steady_clock::now();
        int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
        float max_wh_ratio = 0;
        for (int ino = beg_img_no; ino < end_img_no; ino ++) {
            int h = img_list[indices[ino]].rows;
            int w = img_list[indices[ino]].cols;
            float wh_ratio = w * 1.0 / h;
            max_wh_ratio = max(max_wh_ratio, wh_ratio);
        }
        std::vector<cv::Mat> norm_img_batch;
        for (int ino = beg_img_no; ino < end_img_no; ino ++) {
            cv::Mat srcimg;
            img_list[indices[ino]].copyTo(srcimg);
            cv::Mat resize_img;
            this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_);
            this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_);
            norm_img_batch.push_back(resize_img);
        }
        
        int batch_width = int(ceilf(32 * max_wh_ratio)) - 1;
        std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
        this->permute_op_.Run(norm_img_batch, input.data());
        auto preprocess_end = std::chrono::steady_clock::now();
        preprocess_diff += preprocess_end - preprocess_start;

        // Inference.
        auto input_names = this->predictor_->GetInputNames();
        auto input_t = this->predictor_->GetInputHandle(input_names[0]);
        input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
        auto inference_start = std::chrono::steady_clock::now();
        input_t->CopyFromCpu(input.data());
        this->predictor_->Run();

        std::vector<float> predict_batch;
        auto output_names = this->predictor_->GetOutputNames();
        auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
        auto predict_shape = output_t->shape();

        int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
M
MissPenguin 已提交
71
                                std::multiplies<int>());
M
MissPenguin 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        predict_batch.resize(out_num);

        output_t->CopyToCpu(predict_batch.data());
        auto inference_end = std::chrono::steady_clock::now();
        inference_diff += inference_end - inference_start;
        
        // ctc decode
        auto postprocess_start = std::chrono::steady_clock::now();
        for (int m = 0; m < predict_shape[0]; m++) {
            std::vector<std::string> str_res;
            int argmax_idx;
            int last_index = 0;
            float score = 0.f;
            int count = 0;
            float max_value = 0.0f;

            for (int n = 0; n < predict_shape[1]; n++) {
                argmax_idx =
                    int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
                                        &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
                max_value =
                    float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
                                            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));

                if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
                    score += max_value;
                    count += 1;
                    str_res.push_back(label_list_[argmax_idx]);
                }
                last_index = argmax_idx;
            }
            score /= count;
            if (isnan(score))
                continue;
            for (int i = 0; i < str_res.size(); i++) {
                std::cout << str_res[i];
            }
            std::cout << "\tscore: " << score << std::endl;
        }
        auto postprocess_end = std::chrono::steady_clock::now();
        postprocess_diff += postprocess_end - postprocess_start;
W
WenmuZhou 已提交
113
    }
M
MissPenguin 已提交
114 115 116
    times->push_back(double(preprocess_diff.count() * 1000));
    times->push_back(double(inference_diff.count() * 1000));
    times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118
}

M
MissPenguin 已提交
119
    
littletomatodonkey's avatar
littletomatodonkey 已提交
120
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
L
LDOUBLEV 已提交
121 122
  //   AnalysisConfig config;
  paddle_infer::Config config;
文幕地方's avatar
文幕地方 已提交
123 124
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey 已提交
125

littletomatodonkey's avatar
littletomatodonkey 已提交
126 127
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
L
LDOUBLEV 已提交
128
    if (this->use_tensorrt_) {
M
MissPenguin 已提交
129 130 131 132 133 134 135
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
     if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } 
L
LDOUBLEV 已提交
136 137
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
M
MissPenguin 已提交
138
          precision,
L
LDOUBLEV 已提交
139
          false, false);
M
MissPenguin 已提交
140

L
LDOUBLEV 已提交
141
      std::map<std::string, std::vector<int>> min_input_shape = {
M
MissPenguin 已提交
142 143
          {"x", {1, 3, 32, 10}},
          {"lstm_0.tmp_0", {10, 1, 96}}};
L
LDOUBLEV 已提交
144
      std::map<std::string, std::vector<int>> max_input_shape = {
M
MissPenguin 已提交
145 146
          {"x", {1, 3, 32, 2000}},
          {"lstm_0.tmp_0", {1000, 1, 96}}};
L
LDOUBLEV 已提交
147
      std::map<std::string, std::vector<int>> opt_input_shape = {
M
MissPenguin 已提交
148 149
          {"x", {1, 3, 32, 320}},
          {"lstm_0.tmp_0", {25, 1, 96}}};
L
LDOUBLEV 已提交
150 151 152

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
L
LDOUBLEV 已提交
153
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
154 155
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey 已提交
156 157
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
W
WenmuZhou 已提交
158 159
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey 已提交
160
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
161 162
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey 已提交
163

L
LDOUBLEV 已提交
164
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey 已提交
165
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey 已提交
166
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey 已提交
167 168 169 170

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
M
MissPenguin 已提交
171
//   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey 已提交
172

L
LDOUBLEV 已提交
173
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey 已提交
174 175
}

L
littletomatodonkey 已提交
176
} // namespace PaddleOCR