predict_rec.py 19.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
T
Topdu 已提交
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
43 44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
46
            "use_space_char": args.use_space_char
T
tink2123 已提交
47
        }
T
tink2123 已提交
48 49 50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
51 52 53 54 55 56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
57 58 59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
60 61 62 63 64 65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
66 67 68 69 70 71
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
xuyang2233's avatar
add pr  
xuyang2233 已提交
72 73 74 75 76 77
        elif self.rec_algorithm == "SPIN":
            postprocess_params = {
                'name': 'SPINAttnLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
78
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
79
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
80
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
81
        self.benchmark = args.benchmark
T
tink2123 已提交
82
        self.use_onnx = args.use_onnx
T
tink2123 已提交
83 84 85
        if args.benchmark:
            import auto_log
            pid = os.getpid()
L
LDOUBLEV 已提交
86
            gpu_id = utility.get_infer_gpuid()
T
tink2123 已提交
87 88 89
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
90
                batch_size=args.rec_batch_num,
T
tink2123 已提交
91
                data_shape="dynamic",
92
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
93 94 95
                inference_config=self.config,
                pids=pid,
                process_name=None,
L
LDOUBLEV 已提交
96
                gpu_ids=gpu_id if args.use_gpu else None,
T
tink2123 已提交
97 98 99
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
T
tink2123 已提交
100
                warmup=0,
101
                logger=logger)
L
LDOUBLEV 已提交
102

103
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
104
        imgC, imgH, imgW = self.rec_image_shape
T
Topdu 已提交
105
        if self.rec_algorithm == 'NRTR':
T
Topdu 已提交
106 107 108 109 110 111 112 113 114
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

115
        assert imgC == img.shape[2]
A
andyjpaddle 已提交
116
        imgW = int((imgH * max_wh_ratio))
T
tink2123 已提交
117
        if self.use_onnx:
118 119 120 121
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

122
        h, w = img.shape[:2]
123 124 125 126 127
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
A
andyjpaddle 已提交
128 129 130 131
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
T
tink2123 已提交
132
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
133 134 135 136 137 138 139
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
T
tink2123 已提交
140

T
Topdu 已提交
141 142 143 144 145 146 147 148 149 150
    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image
L
LDOUBLEV 已提交
151

T
tink2123 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

T
Topdu 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

xuyang2233's avatar
add pr  
xuyang2233 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def resize_norm_img_spin(self, img):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # return padding_im
        img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
        img = np.array(img, np.float32)
        img = np.expand_dims(img, -1)
        img = img.transpose((2, 0, 1))
        mean = [127.5]
        std = [127.5]
        mean = np.array(mean, dtype=np.float32)
        std = np.array(std, dtype=np.float32)
        mean = np.float32(mean.reshape(1, -1))
        stdinv = 1 / np.float32(std.reshape(1, -1))
        img -= mean
        img *= stdinv
        return img
L
LDOUBLEV 已提交
275 276
    def __call__(self, img_list):
        img_num = len(img_list)
277
        # Calculate the aspect ratio of all text bars
278 279 280
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
281
        # Sorting can speed up the recognition process
282 283
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
284
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
285
        st = time.time()
T
tink2123 已提交
286 287
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
288 289 290
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
A
andyjpaddle 已提交
291 292 293
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
L
LDOUBLEV 已提交
294
            for ino in range(beg_img_no, end_img_no):
295
                h, w = img_list[indices[ino]].shape[0:2]
296 297 298
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
299

T
Topdu 已提交
300
                if self.rec_algorithm == "SAR":
T
Topdu 已提交
301 302 303 304 305 306 307
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
308
                elif self.rec_algorithm == "SRN":
L
LDOUBLEV 已提交
309 310
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
311 312 313 314 315 316 317 318 319
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
T
Topdu 已提交
320
                elif self.rec_algorithm == "SVTR":
T
tink2123 已提交
321 322
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
T
Topdu 已提交
323 324
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
xuyang2233's avatar
add pr  
xuyang2233 已提交
325 326 327 328
                elif self.rec_algorithm == 'SPIN':
                    norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
329 330 331 332 333
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
L
LDOUBLEV 已提交
334 335
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
336 337
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
T
tink2123 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
T
Topdu 已提交
374 375 376 377 378 379
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
T
tink2123 已提交
380 381 382 383 384 385
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
T
Topdu 已提交
386
                else:
T
tink2123 已提交
387 388 389 390 391 392 393 394 395 396 397 398
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
T
Topdu 已提交
399
                    preds = outputs[0]
T
tink2123 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
W
WenmuZhou 已提交
420 421 422
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
423 424
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
425
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
426 427


428
def main(args):
D
dyning 已提交
429
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
430 431 432
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
433

T
tink2123 已提交
434 435
    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
T
tink2123 已提交
436
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
T
tink2123 已提交
437
    )
438
    # warmup 2 times
L
LDOUBLEV 已提交
439
    if args.warmup:
T
tink2123 已提交
440
        img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
441
        for i in range(2):
L
LDOUBLEV 已提交
442
            res = text_recognizer([img] * int(args.rec_batch_num))
L
LDOUBLEV 已提交
443

L
LDOUBLEV 已提交
444
    for image_file in image_file_list:
L
LDOUBLEV 已提交
445 446 447
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
448 449 450 451 452
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
453 454 455 456 457 458 459 460 461 462
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
463 464
    if args.benchmark:
        text_recognizer.autolog.report()
465 466 467 468


if __name__ == "__main__":
    main(utility.parse_args())