operators.py 15.8 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np
z37757's avatar
z37757 已提交
26
import math
W
WenmuZhou 已提交
27 28 29 30 31


class DecodeImage(object):
    """ decode image """

z37757's avatar
z37757 已提交
32 33 34 35 36
    def __init__(self,
                 img_mode='RGB',
                 channel_first=False,
                 ignore_orientation=False,
                 **kwargs):
W
WenmuZhou 已提交
37 38
        self.img_mode = img_mode
        self.channel_first = channel_first
z37757's avatar
z37757 已提交
39
        self.ignore_orientation = ignore_orientation
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47 48 49

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
z37757's avatar
z37757 已提交
50 51 52 53 54
        if self.ignore_orientation:
            img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
                               cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
L
LDOUBLEV 已提交
55 56
        if img is None:
            return None
W
WenmuZhou 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


T
Topdu 已提交
70 71 72
class NRTRDecodeImage(object):
    """ decode image """

z37757's avatar
z37757 已提交
73
    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
T
Topdu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')

z37757's avatar
z37757 已提交
87
        img = cv2.imdecode(img, 1)
T
Topdu 已提交
88 89 90 91 92 93 94 95

        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]
T
tink2123 已提交
96
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
T
Topdu 已提交
97 98 99 100 101
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data['image'] = img
        return data

T
tink2123 已提交
102

W
WenmuZhou 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
            img.astype('float32') * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


T
tink2123 已提交
146 147
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
T
tink2123 已提交
148
        import fasttext
T
tink2123 已提交
149 150 151 152 153 154 155 156 157
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


D
dyning 已提交
158
class KeepKeys(object):
W
WenmuZhou 已提交
159 160 161 162 163 164 165 166 167 168
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


z37757's avatar
z37757 已提交
169
class Pad(object):
z37757's avatar
z37757 已提交
170 171 172 173 174 175 176
    def __init__(self, size=None, size_div=32, **kwargs):
        if size is not None and not isinstance(size, (int, list, tuple)):
            raise TypeError("Type of target_size is invalid. Now is {}".format(
                type(size)))
        if isinstance(size, int):
            size = [size, size]
        self.size = size
z37757's avatar
z37757 已提交
177 178 179 180 181
        self.size_div = size_div

    def __call__(self, data):

        img = data['image']
z37757's avatar
z37757 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        img_h, img_w = img.shape[0], img.shape[1]
        if self.size:
            resize_h2, resize_w2 = self.size
            assert (
                img_h < resize_h2 and img_w < resize_w2
            ), '(h, w) of target size should be greater than (img_h, img_w)'
        else:
            resize_h2 = max(
                int(math.ceil(img.shape[0] / self.size_div) * self.size_div),
                self.size_div)
            resize_w2 = max(
                int(math.ceil(img.shape[1] / self.size_div) * self.size_div),
                self.size_div)
z37757's avatar
z37757 已提交
195 196 197
        img = cv2.copyMakeBorder(
            img,
            0,
z37757's avatar
z37757 已提交
198
            resize_h2 - img_h,
z37757's avatar
z37757 已提交
199
            0,
z37757's avatar
z37757 已提交
200
            resize_w2 - img_w,
z37757's avatar
z37757 已提交
201 202 203 204 205 206
            cv2.BORDER_CONSTANT,
            value=0)
        data['image'] = img
        return data


L
LDOUBLEV 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
221 222
        if 'polys' in data:
            text_polys = data['polys']
L
LDOUBLEV 已提交
223 224

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
225 226 227 228 229 230 231 232
        if 'polys' in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data['polys'] = np.array(new_boxes, dtype=np.float32)
L
LDOUBLEV 已提交
233 234 235 236
        data['image'] = img_resize
        return data


W
WenmuZhou 已提交
237 238 239 240
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
W
wangjingyeye 已提交
241
        self.keep_ratio = False
W
WenmuZhou 已提交
242 243 244
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
W
wangjingyeye 已提交
245 246
            if 'keep_ratio' in kwargs:
                self.keep_ratio = kwargs['keep_ratio']
文幕地方's avatar
文幕地方 已提交
247
        elif 'limit_side_len' in kwargs:
W
WenmuZhou 已提交
248 249
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
文幕地方's avatar
文幕地方 已提交
250
        elif 'resize_long' in kwargs:
M
MissPenguin 已提交
251 252
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
W
WenmuZhou 已提交
253 254 255 256 257 258
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
M
MissPenguin 已提交
259
        src_h, src_w, _ = img.shape
W
WenmuZhou 已提交
260 261

        if self.resize_type == 0:
M
MissPenguin 已提交
262 263 264 265
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
W
WenmuZhou 已提交
266
        else:
M
MissPenguin 已提交
267 268
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
W
WenmuZhou 已提交
269
        data['image'] = img
M
MissPenguin 已提交
270
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
W
WenmuZhou 已提交
271 272 273 274 275
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
W
wangjingyeye 已提交
276
        if self.keep_ratio:
W
wangjingyeye 已提交
277 278 279
            resize_w = ori_w * resize_h / ori_h
            N = math.ceil(resize_w / 32)
            resize_w = N * 32
M
MissPenguin 已提交
280 281
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
W
WenmuZhou 已提交
282
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
M
MissPenguin 已提交
283 284
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
W
WenmuZhou 已提交
285 286 287 288 289 290 291 292 293 294

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
W
WenmuZhou 已提交
295
        h, w, c = img.shape
W
WenmuZhou 已提交
296 297 298 299 300 301 302 303 304 305

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
W
WenmuZhou 已提交
306
        elif self.limit_type == 'min':
W
WenmuZhou 已提交
307 308 309 310 311 312 313
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
W
WenmuZhou 已提交
314
        elif self.limit_type == 'resize_long':
L
LDOUBLEV 已提交
315
            ratio = float(limit_side_len) / max(h, w)
W
WenmuZhou 已提交
316 317
        else:
            raise Exception('not support limit type, image ')
W
WenmuZhou 已提交
318 319 320
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

Z
zhoujun 已提交
321 322
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
W
WenmuZhou 已提交
323 324 325 326 327 328 329 330

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
M
MissPenguin 已提交
331 332 333
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
L
LDOUBLEV 已提交
334

M
MissPenguin 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
J
Jethong 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

380
        h, w, _ = im.shape
J
Jethong 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)
L
add kie  
LDOUBLEV 已提交
426 427 428 429 430 431 432 433 434 435 436 437


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
            'img_scale'][1]

    def __call__(self, data):
        img = data['image']
        points = data['points']
        src_h, src_w, _ = img.shape
L
debug  
LDOUBLEV 已提交
438 439
        im_resized, scale_factor, [ratio_h, ratio_w
                                   ], [new_h, new_w] = self.resize_image(img)
L
add kie  
LDOUBLEV 已提交
440 441 442 443 444
        resize_points = self.resize_boxes(img, points, scale_factor)
        data['ori_image'] = img
        data['ori_boxes'] = points
        data['points'] = resize_points
        data['image'] = im_resized
L
debug  
LDOUBLEV 已提交
445
        data['shape'] = np.array([new_h, new_w])
L
add kie  
LDOUBLEV 已提交
446 447 448
        return data

    def resize_image(self, img):
L
debug  
LDOUBLEV 已提交
449
        norm_img = np.zeros([1024, 1024, 3], dtype='float32')
L
add kie  
LDOUBLEV 已提交
450 451 452 453 454 455
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
L
debug  
LDOUBLEV 已提交
456 457 458 459 460 461
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
            scale_factor) + 0.5)
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
L
add kie  
LDOUBLEV 已提交
462 463 464 465 466 467
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array(
            [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
L
debug  
LDOUBLEV 已提交
468
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
L
add kie  
LDOUBLEV 已提交
469 470 471 472 473 474 475

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points