提交 78064ad9 编写于 作者: W wangjingyeye

add db++

上级 26a89db7
......@@ -242,8 +242,8 @@ class DetResizeForTest(object):
if 'image_shape' in kwargs:
self.image_shape = kwargs['image_shape']
self.resize_type = 1
if 'keep_ratio' in kwargs: ######
self.keep_ratio = kwargs['keep_ratio'] #######
if 'keep_ratio' in kwargs:
self.keep_ratio = kwargs['keep_ratio']
elif 'limit_side_len' in kwargs:
self.limit_side_len = kwargs['limit_side_len']
self.limit_type = kwargs.get('limit_type', 'min')
......@@ -273,7 +273,7 @@ class DetResizeForTest(object):
def resize_image_type1(self, img):
resize_h, resize_w = self.image_shape
ori_h, ori_w = img.shape[:2] # (h, w, c)
if self.keep_ratio: ########
if self.keep_ratio:
resize_w = ori_w * resize_h / ori_h
N = math.ceil(resize_w / 32)
resize_w = N * 32
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......
......@@ -105,7 +105,7 @@ class DSConv(nn.Layer):
class DBFPN(nn.Layer):
def __init__(self, in_channels, out_channels, use_asf=None, **kwargs):
def __init__(self, in_channels, out_channels, use_asf=False, **kwargs):
super(DBFPN, self).__init__()
self.out_channels = out_channels
self.use_asf = use_asf
......@@ -164,7 +164,7 @@ class DBFPN(nn.Layer):
weight_attr=ParamAttr(initializer=weight_attr),
bias_attr=False)
if self.use_asf:
if self.use_asf is True:
self.asf = ASFBlock(self.out_channels, self.out_channels // 4)
def forward(self, x):
......@@ -192,7 +192,7 @@ class DBFPN(nn.Layer):
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
if self.use_asf:
if self.use_asf is True:
fuse = self.asf(fuse, [p5, p4, p3, p2])
return fuse
......@@ -367,7 +367,19 @@ class LKPAN(nn.Layer):
class ASFBlock(nn.Layer):
"""
This code is refered from:
https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py
"""
def __init__(self, in_channels, inter_channels, out_features_num=4):
"""
Adaptive Scale Fusion (ASF) block of DBNet++
Args:
in_channels: the number of channels in the input data
inter_channels: the number of middle channels
out_features_num: the number of fused stages
"""
super(ASFBlock, self).__init__()
weight_attr = paddle.nn.initializer.KaimingUniform()
self.in_channels = in_channels
......@@ -375,39 +387,38 @@ class ASFBlock(nn.Layer):
self.out_features_num = out_features_num
self.conv = nn.Conv2D(in_channels, inter_channels, 3, padding=1)
self.attention_block_1 = nn.Sequential(
self.spatial_scale = nn.Sequential(
#Nx1xHxW
nn.Conv2D(
1,
1,
3,
in_channels=1,
out_channels=1,
kernel_size=3,
bias_attr=False,
padding=1,
weight_attr=ParamAttr(initializer=weight_attr)),
nn.ReLU(),
nn.Conv2D(
1,
1,
1,
in_channels=1,
out_channels=1,
kernel_size=1,
bias_attr=False,
weight_attr=ParamAttr(initializer=weight_attr)),
nn.Sigmoid())
self.attention_block_2 = nn.Sequential(
self.channel_scale = nn.Sequential(
nn.Conv2D(
inter_channels,
out_features_num,
1,
in_channels=inter_channels,
out_channels=out_features_num,
kernel_size=1,
bias_attr=False,
weight_attr=ParamAttr(initializer=weight_attr)),
nn.Sigmoid())
def forward(self, fuse_features, features_list):
fuse_features = self.conv(fuse_features)
attention_scores = self.attention_block_1(
paddle.mean(
fuse_features, axis=1, keepdim=True)) + fuse_features
attention_scores = self.attention_block_2(attention_scores)
spatial_x = paddle.mean(fuse_features, axis=1, keepdim=True)
attention_scores = self.spatial_scale(spatial_x) + fuse_features
attention_scores = self.channel_scale(attention_scores)
assert len(features_list) == self.out_features_num
out_list = []
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册