label_ops.py 36.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
T
tink2123 已提交
26 27
from ppocr.utils.logging import get_logger

W
WenmuZhou 已提交
28 29 30 31 32 33 34 35 36 37 38 39

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
60 61
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
62
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
63 64 65 66 67 68 69 70 71
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
L
fix  
LDOUBLEV 已提交
72 73 74 75 76 77 78 79 80
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
        return rect
W
WenmuZhou 已提交
81

M
MissPenguin 已提交
82 83 84 85 86 87 88 89 90 91 92
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
93 94 95 96 97 98 99 100 101 102

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
T
tink2123 已提交
103 104
        self.beg_str = "sos"
        self.end_str = "eos"
T
tink2123 已提交
105
        self.lower = False
T
tink2123 已提交
106 107 108 109 110 111

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
112 113
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
114 115
            self.lower = True
        else:
116
            self.character_str = []
W
WenmuZhou 已提交
117 118 119 120
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
121
                    self.character_str.append(line)
W
WenmuZhou 已提交
122
            if use_space_char:
123
                self.character_str.append(" ")
W
WenmuZhou 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
144
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
145
            return None
T
tink2123 已提交
146
        if self.lower:
W
WenmuZhou 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


T
Topdu 已提交
160 161 162 163 164 165 166 167 168
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

T
tink2123 已提交
169 170
        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
171

T
Topdu 已提交
172 173 174 175 176
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
T
Topdu 已提交
177 178
        if len(text) >= self.max_text_len - 1:
            return None
T
Topdu 已提交
179 180 181 182 183 184
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
T
tink2123 已提交
185

T
Topdu 已提交
186
    def add_special_char(self, dict_character):
T
tink2123 已提交
187
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
T
Topdu 已提交
188 189
        return dict_character

T
tink2123 已提交
190

W
WenmuZhou 已提交
191 192 193 194 195 196 197 198
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
199 200
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
201 202 203 204 205 206 207 208 209

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
210 211 212 213 214

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
215 216 217 218 219 220 221
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
222
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
223 224 225 226 227
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
228 229
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
230 231

    def __call__(self, data):
J
Jethong 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
250
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
251
        temp_texts = []
J
Jethong 已提交
252
        for text in txts:
J
Jethong 已提交
253
            text = text.lower()
J
Jethong 已提交
254 255 256
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
257 258
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
259 260 261 262 263
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
264
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
265 266
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
267 268

    def __call__(self, data):
J
Jethong 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
288
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
289 290 291
        return data


L
add kie  
LDOUBLEV 已提交
292 293 294 295
class KieLabelEncode(object):
    def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
L
fix win  
LDOUBLEV 已提交
296
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
320
        max_len = 300
L
add kie  
LDOUBLEV 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
346
        max_num = 300
L
add kie  
LDOUBLEV 已提交
347 348
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
349
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
350 351 352 353

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
354
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
355 356
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
357
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
L
fix  
LDOUBLEV 已提交
441
            if 'label' in ann.keys():
L
fix  
LDOUBLEV 已提交
442
                labels.append(ann['label'])
L
fix  
LDOUBLEV 已提交
443 444
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
L
fix  
LDOUBLEV 已提交
445
            else:
L
LDOUBLEV 已提交
446 447 448
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
449 450 451 452 453 454 455 456 457 458 459 460
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
461 462 463 464 465 466 467 468
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
469 470
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
471 472

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
473 474 475
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
476 477
        return dict_character

L
LDOUBLEV 已提交
478 479
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
480
        text = self.encode(text)
L
LDOUBLEV 已提交
481 482
        if text is None:
            return None
L
LDOUBLEV 已提交
483
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
484 485 486
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
487
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
488 489 490 491 492 493 494
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
495 496 497 498 499 500 501 502 503 504

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
505 506


T
tink2123 已提交
507 508 509 510 511 512 513 514
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
515 516
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
517 518

    def add_special_char(self, dict_character):
T
tink2123 已提交
519
        self.padding = "padding"
T
tink2123 已提交
520
        self.end_str = "eos"
T
tink2123 已提交
521 522 523 524
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
525 526 527 528 529 530 531 532 533
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
534
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
535 536
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
537 538 539 540
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
541 542 543 544 545 546 547 548
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
549 550
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
551 552 553 554 555 556 557 558

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
559
        char_num = len(self.character)
T
tink2123 已提交
560 561 562 563 564
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
565
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
583

L
LDOUBLEV 已提交
584

M
MissPenguin 已提交
585 586
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
587 588 589 590 591 592 593 594

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
M
MissPenguin 已提交
595 596 597
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
L
LDOUBLEV 已提交
598 599
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
M
MissPenguin 已提交
600 601 602 603 604 605 606 607 608
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
L
LDOUBLEV 已提交
609

M
MissPenguin 已提交
610 611 612 613 614
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
W
WenmuZhou 已提交
615
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
M
MissPenguin 已提交
616 617
            character_num = int(substr[0])
            elem_num = int(substr[1])
L
LDOUBLEV 已提交
618
            for cno in range(1, 1 + character_num):
W
WenmuZhou 已提交
619
                character = lines[cno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
620
                list_character.append(character)
L
LDOUBLEV 已提交
621
            for eno in range(1 + character_num, 1 + character_num + elem_num):
W
WenmuZhou 已提交
622
                elem = lines[eno].decode('utf-8').strip("\r\n")
M
MissPenguin 已提交
623 624
                list_elem.append(elem)
        return list_character, list_elem
L
LDOUBLEV 已提交
625

M
MissPenguin 已提交
626 627 628 629 630
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
L
LDOUBLEV 已提交
631

M
MissPenguin 已提交
632 633 634 635 636 637
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
L
LDOUBLEV 已提交
638

M
MissPenguin 已提交
639 640 641 642 643 644 645 646
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
L
LDOUBLEV 已提交
647 648
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
M
MissPenguin 已提交
649 650 651 652 653
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
L
LDOUBLEV 已提交
654 655
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
M
MissPenguin 已提交
656
        td_idx_list = np.where(td_idx_list)[0]
L
LDOUBLEV 已提交
657 658 659

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
660
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
L
LDOUBLEV 已提交
661 662
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
M
MissPenguin 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
L
LDOUBLEV 已提交
689 690 691 692 693
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
M
MissPenguin 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
L
LDOUBLEV 已提交
745
                              % beg_or_end
M
MissPenguin 已提交
746 747
        else:
            assert False, "Unsupport type %s in char_or_elem" \
748
                % char_or_elem
M
MissPenguin 已提交
749
        return idx
A
andyjpaddle 已提交
750 751 752 753 754 755 756 757 758 759


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
760 761
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
787

A
andyjpaddle 已提交
788 789 790 791 792 793
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
794 795


796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


843 844
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
845
    Label encode for NLP VQA methods
846 847 848 849 850 851 852 853 854 855 856
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
857
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
858 859 860 861 862 863 864 865 866
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
867 868 869 870
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
871 872 873 874 875 876 877 878 879 880 881 882
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
883 884
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
885

文幕地方's avatar
文幕地方 已提交
886
        height, width, _ = data['image'].shape
887 888 889 890 891

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
892
        segment_offset_id = []
893 894
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
895 896 897 898 899 900 901 902 903
        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
904 905 906 907

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
文幕地方's avatar
文幕地方 已提交
908
            if train_re:
909 910 911 912 913 914
                # for re
                if len(info["text"]) == 0:
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
915 916
            # smooth_box
            bbox = self._smooth_box(info["bbox"], height, width)
917 918 919 920 921 922 923 924 925 926 927 928

            text = info["text"]
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True)

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
文幕地方's avatar
文幕地方 已提交
929 930 931 932 933 934
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
935 936 937 938
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
939 940 941 942
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
943
                        "label": label.upper(),
944
                    })
文幕地方's avatar
文幕地方 已提交
945 946 947 948 949 950
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
951 952 953 954
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
955 956 957 958 959 960 961 962 963 964
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
965 966 967 968
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
969
        data['entities'] = entities
970

文幕地方's avatar
文幕地方 已提交
971 972 973 974 975
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
976 977
        return data

文幕地方's avatar
文幕地方 已提交
978
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
979 980 981 982 983 984 985
        def trans_poly_to_bbox(poly):
            x1 = np.min([p[0] for p in poly])
            x2 = np.max([p[0] for p in poly])
            y1 = np.min([p[1] for p in poly])
            y2 = np.max([p[1] for p in poly])
            return [x1, y1, x2, y2]

文幕地方's avatar
文幕地方 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
                    "text": res[1][0],
                    "bbox": trans_poly_to_bbox(res[0]),
                    "poly": res[0],
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
            return info_dict["ocr_info"]

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
        if label.lower() == "other":
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):

        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out