# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy import numpy as np import string from shapely.geometry import LineString, Point, Polygon import json import copy from ppocr.utils.logging import get_logger class ClsLabelEncode(object): def __init__(self, label_list, **kwargs): self.label_list = label_list def __call__(self, data): label = data['label'] if label not in self.label_list: return None label = self.label_list.index(label) data['label'] = label return data class DetLabelEncode(object): def __init__(self, **kwargs): pass def __call__(self, data): label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) if len(boxes) == 0: return None boxes = self.expand_points_num(boxes) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['texts'] = txts data['ignore_tags'] = txt_tags return data def order_points_clockwise(self, pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) diff = np.diff(np.array(tmp), axis=1) rect[1] = tmp[np.argmin(diff)] rect[3] = tmp[np.argmax(diff)] return rect def expand_points_num(self, boxes): max_points_num = 0 for box in boxes: if len(box) > max_points_num: max_points_num = len(box) ex_boxes = [] for box in boxes: ex_box = box + [box[-1]] * (max_points_num - len(box)) ex_boxes.append(ex_box) return ex_boxes class BaseRecLabelEncode(object): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False): self.max_text_len = max_text_length self.beg_str = "sos" self.end_str = "eos" self.lower = False if character_dict_path is None: logger = get_logger() logger.warning( "The character_dict_path is None, model can only recognize number and lower letters" ) self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) self.lower = True else: self.character_str = [] with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str.append(line) if use_space_char: self.character_str.append(" ") dict_character = list(self.character_str) dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): return dict_character def encode(self, text): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ if len(text) == 0 or len(text) > self.max_text_len: return None if self.lower: text = text.lower() text_list = [] for char in text: if char not in self.dict: # logger = get_logger() # logger.warning('{} is not in dict'.format(char)) continue text_list.append(self.dict[char]) if len(text_list) == 0: return None return text_list class NRTRLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(NRTRLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len - 1: return None data['length'] = np.array(len(text)) text.insert(0, 2) text.append(3) text = text + [0] * (self.max_text_len - len(text)) data['label'] = np.array(text) return data def add_special_char(self, dict_character): dict_character = ['blank', '', '', ''] + dict_character return dict_character class CTCLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(CTCLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None data['length'] = np.array(len(text)) text = text + [0] * (self.max_text_len - len(text)) data['label'] = np.array(text) label = [0] * len(self.character) for x in text: label[x] += 1 data['label_ace'] = np.array(label) return data def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character class E2ELabelEncodeTest(BaseRecLabelEncode): def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(E2ELabelEncodeTest, self).__init__( max_text_length, character_dict_path, use_space_char) def __call__(self, data): import json padnum = len(self.dict) label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['ignore_tags'] = txt_tags temp_texts = [] for text in txts: text = text.lower() text = self.encode(text) if text is None: return None text = text + [padnum] * (self.max_text_len - len(text) ) # use 36 to pad temp_texts.append(text) data['texts'] = np.array(temp_texts) return data class E2ELabelEncodeTrain(object): def __init__(self, **kwargs): pass def __call__(self, data): import json label = data['label'] label = json.loads(label) nBox = len(label) boxes, txts, txt_tags = [], [], [] for bno in range(0, nBox): box = label[bno]['points'] txt = label[bno]['transcription'] boxes.append(box) txts.append(txt) if txt in ['*', '###']: txt_tags.append(True) else: txt_tags.append(False) boxes = np.array(boxes, dtype=np.float32) txt_tags = np.array(txt_tags, dtype=np.bool) data['polys'] = boxes data['texts'] = txts data['ignore_tags'] = txt_tags return data class KieLabelEncode(object): def __init__(self, character_dict_path, norm=10, directed=False, **kwargs): super(KieLabelEncode, self).__init__() self.dict = dict({'': 0}) with open(character_dict_path, 'r', encoding='utf-8') as fr: idx = 1 for line in fr: char = line.strip() self.dict[char] = idx idx += 1 self.norm = norm self.directed = directed def compute_relation(self, boxes): """Compute relation between every two boxes.""" x1s, y1s = boxes[:, 0:1], boxes[:, 1:2] x2s, y2s = boxes[:, 4:5], boxes[:, 5:6] ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1) dxs = (x1s[:, 0][None] - x1s) / self.norm dys = (y1s[:, 0][None] - y1s) / self.norm xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs whs = ws / hs + np.zeros_like(xhhs) relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1) bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32) return relations, bboxes def pad_text_indices(self, text_inds): """Pad text index to same length.""" max_len = 300 recoder_len = max([len(text_ind) for text_ind in text_inds]) padded_text_inds = -np.ones((len(text_inds), max_len), np.int32) for idx, text_ind in enumerate(text_inds): padded_text_inds[idx, :len(text_ind)] = np.array(text_ind) return padded_text_inds, recoder_len def list_to_numpy(self, ann_infos): """Convert bboxes, relations, texts and labels to ndarray.""" boxes, text_inds = ann_infos['points'], ann_infos['text_inds'] boxes = np.array(boxes, np.int32) relations, bboxes = self.compute_relation(boxes) labels = ann_infos.get('labels', None) if labels is not None: labels = np.array(labels, np.int32) edges = ann_infos.get('edges', None) if edges is not None: labels = labels[:, None] edges = np.array(edges) edges = (edges[:, None] == edges[None, :]).astype(np.int32) if self.directed: edges = (edges & labels == 1).astype(np.int32) np.fill_diagonal(edges, -1) labels = np.concatenate([labels, edges], -1) padded_text_inds, recoder_len = self.pad_text_indices(text_inds) max_num = 300 temp_bboxes = np.zeros([max_num, 4]) h, _ = bboxes.shape temp_bboxes[:h, :] = bboxes temp_relations = np.zeros([max_num, max_num, 5]) temp_relations[:h, :h, :] = relations temp_padded_text_inds = np.zeros([max_num, max_num]) temp_padded_text_inds[:h, :] = padded_text_inds temp_labels = np.zeros([max_num, max_num]) temp_labels[:h, :h + 1] = labels tag = np.array([h, recoder_len]) return dict( image=ann_infos['image'], points=temp_bboxes, relations=temp_relations, texts=temp_padded_text_inds, labels=temp_labels, tag=tag) def convert_canonical(self, points_x, points_y): assert len(points_x) == 4 assert len(points_y) == 4 points = [Point(points_x[i], points_y[i]) for i in range(4)] polygon = Polygon([(p.x, p.y) for p in points]) min_x, min_y, _, _ = polygon.bounds points_to_lefttop = [ LineString([points[i], Point(min_x, min_y)]) for i in range(4) ] distances = np.array([line.length for line in points_to_lefttop]) sort_dist_idx = np.argsort(distances) lefttop_idx = sort_dist_idx[0] if lefttop_idx == 0: point_orders = [0, 1, 2, 3] elif lefttop_idx == 1: point_orders = [1, 2, 3, 0] elif lefttop_idx == 2: point_orders = [2, 3, 0, 1] else: point_orders = [3, 0, 1, 2] sorted_points_x = [points_x[i] for i in point_orders] sorted_points_y = [points_y[j] for j in point_orders] return sorted_points_x, sorted_points_y def sort_vertex(self, points_x, points_y): assert len(points_x) == 4 assert len(points_y) == 4 x = np.array(points_x) y = np.array(points_y) center_x = np.sum(x) * 0.25 center_y = np.sum(y) * 0.25 x_arr = np.array(x - center_x) y_arr = np.array(y - center_y) angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi sort_idx = np.argsort(angle) sorted_points_x, sorted_points_y = [], [] for i in range(4): sorted_points_x.append(points_x[sort_idx[i]]) sorted_points_y.append(points_y[sort_idx[i]]) return self.convert_canonical(sorted_points_x, sorted_points_y) def __call__(self, data): import json label = data['label'] annotations = json.loads(label) boxes, texts, text_inds, labels, edges = [], [], [], [], [] for ann in annotations: box = ann['points'] x_list = [box[i][0] for i in range(4)] y_list = [box[i][1] for i in range(4)] sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list) sorted_box = [] for x, y in zip(sorted_x_list, sorted_y_list): sorted_box.append(x) sorted_box.append(y) boxes.append(sorted_box) text = ann['transcription'] texts.append(ann['transcription']) text_ind = [self.dict[c] for c in text if c in self.dict] text_inds.append(text_ind) if 'label' in ann.keys(): labels.append(ann['label']) elif 'key_cls' in ann.keys(): labels.append(ann['key_cls']) else: raise ValueError( "Cannot found 'key_cls' in ann.keys(), please check your training annotation." ) edges.append(ann.get('edge', 0)) ann_infos = dict( image=data['image'], points=boxes, texts=texts, text_inds=text_inds, edges=edges, labels=labels) return self.list_to_numpy(ann_infos) class AttnLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(AttnLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): self.beg_str = "sos" self.end_str = "eos" dict_character = [self.beg_str] + dict_character + [self.end_str] return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len: return None data['length'] = np.array(len(text)) text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len - len(text) - 2) data['label'] = np.array(text) return data def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class SEEDLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(SEEDLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): self.padding = "padding" self.end_str = "eos" self.unknown = "unknown" dict_character = dict_character + [ self.end_str, self.padding, self.unknown ] return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len: return None data['length'] = np.array(len(text)) + 1 # conclude eos text = text + [len(self.character) - 3] + [len(self.character) - 2] * ( self.max_text_len - len(text) - 1) data['label'] = np.array(text) return data class SRNLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length=25, character_dict_path=None, use_space_char=False, **kwargs): super(SRNLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): dict_character = dict_character + [self.beg_str, self.end_str] return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) char_num = len(self.character) if text is None: return None if len(text) > self.max_text_len: return None data['length'] = np.array(len(text)) text = text + [char_num - 1] * (self.max_text_len - len(text)) data['label'] = np.array(text) return data def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class TableLabelEncode(object): """ Convert between text-label and text-index """ def __init__(self, max_text_length, max_elem_length, max_cell_num, character_dict_path, span_weight=1.0, **kwargs): self.max_text_length = max_text_length self.max_elem_length = max_elem_length self.max_cell_num = max_cell_num list_character, list_elem = self.load_char_elem_dict( character_dict_path) list_character = self.add_special_char(list_character) list_elem = self.add_special_char(list_elem) self.dict_character = {} for i, char in enumerate(list_character): self.dict_character[char] = i self.dict_elem = {} for i, elem in enumerate(list_elem): self.dict_elem[elem] = i self.span_weight = span_weight def load_char_elem_dict(self, character_dict_path): list_character = [] list_elem = [] with open(character_dict_path, "rb") as fin: lines = fin.readlines() substr = lines[0].decode('utf-8').strip("\r\n").split("\t") character_num = int(substr[0]) elem_num = int(substr[1]) for cno in range(1, 1 + character_num): character = lines[cno].decode('utf-8').strip("\r\n") list_character.append(character) for eno in range(1 + character_num, 1 + character_num + elem_num): elem = lines[eno].decode('utf-8').strip("\r\n") list_elem.append(elem) return list_character, list_elem def add_special_char(self, list_character): self.beg_str = "sos" self.end_str = "eos" list_character = [self.beg_str] + list_character + [self.end_str] return list_character def get_span_idx_list(self): span_idx_list = [] for elem in self.dict_elem: if 'span' in elem: span_idx_list.append(self.dict_elem[elem]) return span_idx_list def __call__(self, data): cells = data['cells'] structure = data['structure']['tokens'] structure = self.encode(structure, 'elem') if structure is None: return None elem_num = len(structure) structure = [0] + structure + [len(self.dict_elem) - 1] structure = structure + [0] * (self.max_elem_length + 2 - len(structure) ) structure = np.array(structure) data['structure'] = structure elem_char_idx1 = self.dict_elem[''] elem_char_idx2 = self.dict_elem[' 0: span_weight = len(td_idx_list) * 1.0 / len(span_idx_list) span_weight = min(max(span_weight, 1.0), self.span_weight) for cno in range(len(cells)): if 'bbox' in cells[cno]: bbox = cells[cno]['bbox'].copy() bbox[0] = bbox[0] * 1.0 / img_width bbox[1] = bbox[1] * 1.0 / img_height bbox[2] = bbox[2] * 1.0 / img_width bbox[3] = bbox[3] * 1.0 / img_height td_idx = td_idx_list[cno] bbox_list[td_idx] = bbox bbox_list_mask[td_idx] = 1.0 cand_span_idx = td_idx + 1 if cand_span_idx < (self.max_elem_length + 2): if structure[cand_span_idx] in span_idx_list: structure_mask[cand_span_idx] = span_weight data['bbox_list'] = bbox_list data['bbox_list_mask'] = bbox_list_mask data['structure_mask'] = structure_mask char_beg_idx = self.get_beg_end_flag_idx('beg', 'char') char_end_idx = self.get_beg_end_flag_idx('end', 'char') elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem') elem_end_idx = self.get_beg_end_flag_idx('end', 'elem') data['sp_tokens'] = np.array([ char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length, self.max_elem_length, self.max_cell_num, elem_num ]) return data def encode(self, text, char_or_elem): """convert text-label into text-index. """ if char_or_elem == "char": max_len = self.max_text_length current_dict = self.dict_character else: max_len = self.max_elem_length current_dict = self.dict_elem if len(text) > max_len: return None if len(text) == 0: if char_or_elem == "char": return [self.dict_character['space']] else: return None text_list = [] for char in text: if char not in current_dict: return None text_list.append(current_dict[char]) if len(text_list) == 0: if char_or_elem == "char": return [self.dict_character['space']] else: return None return text_list def get_ignored_tokens(self, char_or_elem): beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem) end_idx = self.get_beg_end_flag_idx("end", char_or_elem) return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end, char_or_elem): if char_or_elem == "char": if beg_or_end == "beg": idx = np.array(self.dict_character[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict_character[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \ % beg_or_end elif char_or_elem == "elem": if beg_or_end == "beg": idx = np.array(self.dict_elem[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict_elem[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \ % beg_or_end else: assert False, "Unsupport type %s in char_or_elem" \ % char_or_elem return idx class SARLabelEncode(BaseRecLabelEncode): """ Convert between text-label and text-index """ def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(SARLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): beg_end_str = "" unknown_str = "" padding_str = "" dict_character = dict_character + [unknown_str] self.unknown_idx = len(dict_character) - 1 dict_character = dict_character + [beg_end_str] self.start_idx = len(dict_character) - 1 self.end_idx = len(dict_character) - 1 dict_character = dict_character + [padding_str] self.padding_idx = len(dict_character) - 1 return dict_character def __call__(self, data): text = data['label'] text = self.encode(text) if text is None: return None if len(text) >= self.max_text_len - 1: return None data['length'] = np.array(len(text)) target = [self.start_idx] + text + [self.end_idx] padded_text = [self.padding_idx for _ in range(self.max_text_len)] padded_text[:len(target)] = target data['label'] = np.array(padded_text) return data def get_ignored_tokens(self): return [self.padding_idx] class PRENLabelEncode(BaseRecLabelEncode): def __init__(self, max_text_length, character_dict_path, use_space_char=False, **kwargs): super(PRENLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) def add_special_char(self, dict_character): padding_str = '' # 0 end_str = '' # 1 unknown_str = '' # 2 dict_character = [padding_str, end_str, unknown_str] + dict_character self.padding_idx = 0 self.end_idx = 1 self.unknown_idx = 2 return dict_character def encode(self, text): if len(text) == 0 or len(text) >= self.max_text_len: return None if self.lower: text = text.lower() text_list = [] for char in text: if char not in self.dict: text_list.append(self.unknown_idx) else: text_list.append(self.dict[char]) text_list.append(self.end_idx) if len(text_list) < self.max_text_len: text_list += [self.padding_idx] * ( self.max_text_len - len(text_list)) return text_list def __call__(self, data): text = data['label'] encoded_text = self.encode(text) if encoded_text is None: return None data['label'] = np.array(encoded_text) return data class VQATokenLabelEncode(object): """ Label encode for NLP VQA methods """ def __init__(self, class_path, contains_re=False, add_special_ids=False, algorithm='LayoutXLM', infer_mode=False, ocr_engine=None, **kwargs): super(VQATokenLabelEncode, self).__init__() from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer from ppocr.utils.utility import load_vqa_bio_label_maps tokenizer_dict = { 'LayoutXLM': { 'class': LayoutXLMTokenizer, 'pretrained_model': 'layoutxlm-base-uncased' }, 'LayoutLM': { 'class': LayoutLMTokenizer, 'pretrained_model': 'layoutlm-base-uncased' }, 'LayoutLMv2': { 'class': LayoutLMv2Tokenizer, 'pretrained_model': 'layoutlmv2-base-uncased' } } self.contains_re = contains_re tokenizer_config = tokenizer_dict[algorithm] self.tokenizer = tokenizer_config['class'].from_pretrained( tokenizer_config['pretrained_model']) self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path) self.add_special_ids = add_special_ids self.infer_mode = infer_mode self.ocr_engine = ocr_engine def __call__(self, data): # load bbox and label info ocr_info = self._load_ocr_info(data) height, width, _ = data['image'].shape words_list = [] bbox_list = [] input_ids_list = [] token_type_ids_list = [] segment_offset_id = [] gt_label_list = [] entities = [] # for re train_re = self.contains_re and not self.infer_mode if train_re: relations = [] id2label = {} entity_id_to_index_map = {} empty_entity = set() data['ocr_info'] = copy.deepcopy(ocr_info) for info in ocr_info: if train_re: # for re if len(info["text"]) == 0: empty_entity.add(info["id"]) continue id2label[info["id"]] = info["label"] relations.extend([tuple(sorted(l)) for l in info["linking"]]) # smooth_box bbox = self._smooth_box(info["bbox"], height, width) text = info["text"] encode_res = self.tokenizer.encode( text, pad_to_max_seq_len=False, return_attention_mask=True) if not self.add_special_ids: # TODO: use tok.all_special_ids to remove encode_res["input_ids"] = encode_res["input_ids"][1:-1] encode_res["token_type_ids"] = encode_res["token_type_ids"][1: -1] encode_res["attention_mask"] = encode_res["attention_mask"][1: -1] # parse label if not self.infer_mode: label = info['label'] gt_label = self._parse_label(label, encode_res) # construct entities for re if train_re: if gt_label[0] != self.label2id_map["O"]: entity_id_to_index_map[info["id"]] = len(entities) label = label.upper() entities.append({ "start": len(input_ids_list), "end": len(input_ids_list) + len(encode_res["input_ids"]), "label": label.upper(), }) else: entities.append({ "start": len(input_ids_list), "end": len(input_ids_list) + len(encode_res["input_ids"]), "label": 'O', }) input_ids_list.extend(encode_res["input_ids"]) token_type_ids_list.extend(encode_res["token_type_ids"]) bbox_list.extend([bbox] * len(encode_res["input_ids"])) words_list.append(text) segment_offset_id.append(len(input_ids_list)) if not self.infer_mode: gt_label_list.extend(gt_label) data['input_ids'] = input_ids_list data['token_type_ids'] = token_type_ids_list data['bbox'] = bbox_list data['attention_mask'] = [1] * len(input_ids_list) data['labels'] = gt_label_list data['segment_offset_id'] = segment_offset_id data['tokenizer_params'] = dict( padding_side=self.tokenizer.padding_side, pad_token_type_id=self.tokenizer.pad_token_type_id, pad_token_id=self.tokenizer.pad_token_id) data['entities'] = entities if train_re: data['relations'] = relations data['id2label'] = id2label data['empty_entity'] = empty_entity data['entity_id_to_index_map'] = entity_id_to_index_map return data def _load_ocr_info(self, data): def trans_poly_to_bbox(poly): x1 = np.min([p[0] for p in poly]) x2 = np.max([p[0] for p in poly]) y1 = np.min([p[1] for p in poly]) y2 = np.max([p[1] for p in poly]) return [x1, y1, x2, y2] if self.infer_mode: ocr_result = self.ocr_engine.ocr(data['image'], cls=False) ocr_info = [] for res in ocr_result: ocr_info.append({ "text": res[1][0], "bbox": trans_poly_to_bbox(res[0]), "poly": res[0], }) return ocr_info else: info = data['label'] # read text info info_dict = json.loads(info) return info_dict["ocr_info"] def _smooth_box(self, bbox, height, width): bbox[0] = int(bbox[0] * 1000.0 / width) bbox[2] = int(bbox[2] * 1000.0 / width) bbox[1] = int(bbox[1] * 1000.0 / height) bbox[3] = int(bbox[3] * 1000.0 / height) return bbox def _parse_label(self, label, encode_res): gt_label = [] if label.lower() == "other": gt_label.extend([0] * len(encode_res["input_ids"])) else: gt_label.append(self.label2id_map[("b-" + label).upper()]) gt_label.extend([self.label2id_map[("i-" + label).upper()]] * (len(encode_res["input_ids"]) - 1)) return gt_label class MultiLabelEncode(BaseRecLabelEncode): def __init__(self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs): super(MultiLabelEncode, self).__init__( max_text_length, character_dict_path, use_space_char) self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path, use_space_char, **kwargs) self.sar_encode = SARLabelEncode(max_text_length, character_dict_path, use_space_char, **kwargs) def __call__(self, data): data_ctc = copy.deepcopy(data) data_sar = copy.deepcopy(data) data_out = dict() data_out['img_path'] = data.get('img_path', None) data_out['image'] = data['image'] ctc = self.ctc_encode.__call__(data_ctc) sar = self.sar_encode.__call__(data_sar) if ctc is None or sar is None: return None data_out['label_ctc'] = ctc['label'] data_out['label_sar'] = sar['label'] data_out['length'] = ctc['length'] return data_out