basic_loss.py 5.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
25
    def __init__(self, epsilon=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56


L
LDOUBLEV 已提交
57 58
class KLJSLoss(object):
    def __init__(self, mode='kl'):
59
        assert mode in ['kl', 'js', 'KL', 'JS'
L
LDOUBLEV 已提交
60
                        ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
L
LDOUBLEV 已提交
61 62 63 64
        self.mode = mode

    def __call__(self, p1, p2, reduction="mean"):

L
LDOUBLEV 已提交
65 66 67 68 69 70 71
        if self.mode.lower() == 'kl':
            loss = paddle.multiply(p2, paddle.log((p2 + 1e-5) / (p1 + 1e-5) + 1e-5))
            loss += paddle.multiply(
                    p1, paddle.log((p1 + 1e-5) / (p2 + 1e-5) + 1e-5))
            loss *= 0.5
        elif self.mode.lower() == "js":
            loss = paddle.multiply(p2, paddle.log((2*p2 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
72
            loss += paddle.multiply(
L
LDOUBLEV 已提交
73
                    p1, paddle.log((2*p1 + 1e-5) / (p1 + p2 + 1e-5) + 1e-5))
L
LDOUBLEV 已提交
74
            loss *= 0.5
L
LDOUBLEV 已提交
75 76 77
        else:
            raise ValueError("The mode.lower() if KLJSLoss should be one of ['kl', 'js']")
            
L
LDOUBLEV 已提交
78
        if reduction == "mean":
79 80 81
            loss = paddle.mean(loss, axis=[1, 2])
        elif reduction == "none" or reduction is None:
            return loss
L
LDOUBLEV 已提交
82
        else:
83 84 85
            loss = paddle.sum(loss, axis=[1, 2])

        return loss
L
LDOUBLEV 已提交
86 87


littletomatodonkey's avatar
littletomatodonkey 已提交
88 89 90 91 92
class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

93
    def __init__(self, act=None, use_log=False):
littletomatodonkey's avatar
littletomatodonkey 已提交
94
        super().__init__()
95 96 97 98 99 100 101 102
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None
103 104

        self.use_log = use_log
L
LDOUBLEV 已提交
105
        self.jskl_loss = KLJSLoss(mode="kl")
littletomatodonkey's avatar
littletomatodonkey 已提交
106

107 108 109 110 111 112 113
    def _kldiv(self, x, target):
        eps = 1.0e-10
        loss = target * (paddle.log(target + eps) - x)
        # batch mean loss
        loss = paddle.sum(loss) / loss.shape[0]
        return loss

littletomatodonkey's avatar
littletomatodonkey 已提交
114
    def forward(self, out1, out2):
115
        if self.act is not None:
A
andyjpaddle 已提交
116 117
            out1 = self.act(out1) + 1e-10
            out2 = self.act(out2) + 1e-10
118 119
        if self.use_log:
            # for recognition distillation, log is needed for feature map
L
LDOUBLEV 已提交
120 121
            log_out1 = paddle.log(out1)
            log_out2 = paddle.log(out2)
122 123
            loss = (
                self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
L
LDOUBLEV 已提交
124
        else:
125
            # for detection distillation log is not needed
L
LDOUBLEV 已提交
126
            loss = self.jskl_loss(out1, out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
127
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
128 129 130 131 132 133 134 135


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
136
    def __init__(self, mode="l2", **kargs):
137
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
138 139 140
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
141
        elif mode == "l2":
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143 144 145 146
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
littletomatodonkey's avatar
littletomatodonkey 已提交
147
        return self.loss_func(x, y)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162


class LossFromOutput(nn.Layer):
    def __init__(self, key='loss', reduction='none'):
        super().__init__()
        self.key = key
        self.reduction = reduction

    def forward(self, predicts, batch):
        loss = predicts[self.key]
        if self.reduction == 'mean':
            loss = paddle.mean(loss)
        elif self.reduction == 'sum':
            loss = paddle.sum(loss)
        return {'loss': loss}