ocr_rec.cpp 8.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

L
liuss 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
template <typename T>
vector<int> argsort(const std::vector<T>& array)
{
    const int array_len(array.size());
    std::vector<int> array_index(array_len, 0);
    for (int i = 0; i < array_len; ++i)
        array_index[i] = i;

    std::sort(array_index.begin(), array_index.end(),
        [&array](int pos1, int pos2) {return (array[pos1] < array[pos2]); });

    return array_index;
}

littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33
namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
W
WenmuZhou 已提交
34
                         cv::Mat &img, Classifier *cls) {
littletomatodonkey's avatar
littletomatodonkey 已提交
35 36 37 38
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;
L
liuss 已提交
39 40
  std::vector<float> width_list;
  std::vector<cv::Mat> img_list;
littletomatodonkey's avatar
littletomatodonkey 已提交
41

L
liuss 已提交
42 43 44 45 46 47 48 49 50 51 52 53
  for (int i = boxes.size() - 1; i >= 0; i--) {
      crop_img = GetRotateCropImage(srcimg, boxes[i]);
      if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
      }
      img_list.push_back(crop_img);
      float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
      width_list.push_back(wh_ratio);
  }
  //sort box
  vector<int> sort_index = argsort(width_list);
  int batch_num1 = this->rec_batch_num_;//batchsize
littletomatodonkey's avatar
littletomatodonkey 已提交
54 55
  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
L
liuss 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int beg_img_no = 0;
  int end_img_no = 0;
  for (int beg_img_no = 0; beg_img_no < img_list.size(); beg_img_no += batch_num1)
  {
    float max_wh_ratio = 0;
    end_img_no = min((int)boxes.size(), beg_img_no + batch_num1);
    int batch_num = min(end_img_no - beg_img_no, batch_num1);
    max_wh_ratio = width_list[sort_index[end_img_no - 1]];
    int imgW1 = int(32 * max_wh_ratio);
    int nqu, nra;
    nqu = imgW1 / 4;
    nra = imgW1 % 4;
    int imgW = imgW1;
    if (nra > 0)
    {
        imgW = int(4 * (nqu + 1));
W
WenmuZhou 已提交
72
    }
L
liuss 已提交
73 74 75 76 77 78 79 80 81 82 83 84
    std::vector<float> input(batch_num * 3 * 32 * imgW, 0.0f);//batchsize input
    for (int i = beg_img_no; i < end_img_no; i++)
    {
        crop_img = img_list[sort_index[i]];
        this->resize_op_.Run(crop_img, resize_img, max_wh_ratio);//resize
        this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
            this->is_scale_);

        cv::Mat padding_im;
        cv::copyMakeBorder(resize_img, padding_im, 0, 0, 0, int(imgW - resize_img.cols), cv::BORDER_CONSTANT, { 0, 0, 0 });//padding image

        this->permute_op_.Run(&padding_im, input.data() + (i - beg_img_no) * 3 * padding_im.rows * padding_im.cols);
85
    }
L
liuss 已提交
86 87 88 89 90 91
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputTensor(input_names[0]);
    input_t->Reshape({ batch_num, 3, 32, imgW });
    input_t->copy_from_cpu(input.data());

    this->predictor_->ZeroCopyRun();
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93 94 95

    std::vector<int64_t> rec_idx;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
L
liuss 已提交
96
    auto rec_idx_lod = output_t->lod()[0];
littletomatodonkey's avatar
littletomatodonkey 已提交
97

L
liuss 已提交
98 99 100 101
    std::vector<int> output_shape = output_t->shape();
    int out_num = 1;
    for (int i = 0; i < output_shape.size(); ++i) {
        out_num *= output_shape[i];
littletomatodonkey's avatar
littletomatodonkey 已提交
102
    }
L
liuss 已提交
103 104
    rec_idx.resize(out_num);
    output_t->copy_to_cpu(rec_idx.data());//output data
littletomatodonkey's avatar
littletomatodonkey 已提交
105 106 107 108

    std::vector<float> predict_batch;
    auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]);

L
liuss 已提交
109
    auto predict_lod = output_t_1->lod()[0];
littletomatodonkey's avatar
littletomatodonkey 已提交
110
    auto predict_shape = output_t_1->shape();
L
liuss 已提交
111 112 113 114 115

    int out_num_1 = 1;
    for (int i = 0; i < predict_shape.size(); ++i) {
        out_num_1 *= predict_shape[i];
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118 119 120 121

    predict_batch.resize(out_num_1);
    output_t_1->copy_to_cpu(predict_batch.data());

    int argmax_idx;
    int blank = predict_shape[1];
L
liuss 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    for (int j = 0; j < rec_idx_lod.size() - 1; j++)
    {
        std::vector<int> pred_idx;
        float score = 0.f;
        int count = 0;
        float max_value = 0.0f;
        for (int n = int(rec_idx_lod[j]); n < int(rec_idx_lod[j + 1]); n++) {
            pred_idx.push_back(int(rec_idx[n]));
        }
        if (pred_idx.size() < 1e-3)
            continue;

        index += 1;
        std::cout << index << "\t";
        for (int n = 0; n < pred_idx.size(); n++) {
            std::cout << label_list_[pred_idx[n]];
        }

        for (int n = predict_lod[j]; n < predict_lod[j + 1] - 1; n++) {
            argmax_idx =
                int(Utility::argmax(&predict_batch[n * predict_shape[1]],
                    &predict_batch[(n + 1) * predict_shape[1]]));

            max_value = predict_batch[n * predict_shape[1] + argmax_idx];
            if (blank - 1 - argmax_idx > 1e-5) {
                score += max_value;
                count += 1;
            }
        }
        score /= count;
        std::cout << "\tscore: " << score << std::endl;
littletomatodonkey's avatar
littletomatodonkey 已提交
154 155 156 157
    }
  }
}

littletomatodonkey's avatar
littletomatodonkey 已提交
158
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
littletomatodonkey's avatar
littletomatodonkey 已提交
159 160 161
  AnalysisConfig config;
  config.SetModel(model_dir + "/model", model_dir + "/params");

littletomatodonkey's avatar
littletomatodonkey 已提交
162 163 164 165
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey 已提交
166 167
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
littletomatodonkey's avatar
littletomatodonkey 已提交
168
      // cache 10 different shapes for mkldnn to avoid memory leak
littletomatodonkey's avatar
littletomatodonkey 已提交
169
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey 已提交
170
    }
littletomatodonkey's avatar
littletomatodonkey 已提交
171 172
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey 已提交
173

littletomatodonkey's avatar
littletomatodonkey 已提交
174
  // false for zero copy tensor
175
  // true for commom tensor
176
  config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
littletomatodonkey's avatar
littletomatodonkey 已提交
177
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey 已提交
178
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey 已提交
179 180 181 182

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey 已提交
183
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey 已提交
184 185 186 187

  this->predictor_ = CreatePaddlePredictor(config);
}

littletomatodonkey's avatar
littletomatodonkey 已提交
188 189
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey 已提交
243
} // namespace PaddleOCR