// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include template vector argsort(const std::vector& array) { const int array_len(array.size()); std::vector array_index(array_len, 0); for (int i = 0; i < array_len; ++i) array_index[i] = i; std::sort(array_index.begin(), array_index.end(), [&array](int pos1, int pos2) {return (array[pos1] < array[pos2]); }); return array_index; } namespace PaddleOCR { void CRNNRecognizer::Run(std::vector>> boxes, cv::Mat &img, Classifier *cls) { cv::Mat srcimg; img.copyTo(srcimg); cv::Mat crop_img; cv::Mat resize_img; std::vector width_list; std::vector img_list; for (int i = boxes.size() - 1; i >= 0; i--) { crop_img = GetRotateCropImage(srcimg, boxes[i]); if (cls != nullptr) { crop_img = cls->Run(crop_img); } img_list.push_back(crop_img); float wh_ratio = float(crop_img.cols) / float(crop_img.rows); width_list.push_back(wh_ratio); } //sort box vector sort_index = argsort(width_list); int batch_num1 = this->rec_batch_num_;//batchsize std::cout << "The predicted text is :" << std::endl; int index = 0; int beg_img_no = 0; int end_img_no = 0; for (int beg_img_no = 0; beg_img_no < img_list.size(); beg_img_no += batch_num1) { float max_wh_ratio = 0; end_img_no = min((int)boxes.size(), beg_img_no + batch_num1); int batch_num = min(end_img_no - beg_img_no, batch_num1); max_wh_ratio = width_list[sort_index[end_img_no - 1]]; int imgW1 = int(32 * max_wh_ratio); int nqu, nra; nqu = imgW1 / 4; nra = imgW1 % 4; int imgW = imgW1; if (nra > 0) { imgW = int(4 * (nqu + 1)); } std::vector input(batch_num * 3 * 32 * imgW, 0.0f);//batchsize input for (int i = beg_img_no; i < end_img_no; i++) { crop_img = img_list[sort_index[i]]; this->resize_op_.Run(crop_img, resize_img, max_wh_ratio);//resize this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); cv::Mat padding_im; cv::copyMakeBorder(resize_img, padding_im, 0, 0, 0, int(imgW - resize_img.cols), cv::BORDER_CONSTANT, { 0, 0, 0 });//padding image this->permute_op_.Run(&padding_im, input.data() + (i - beg_img_no) * 3 * padding_im.rows * padding_im.cols); } auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputTensor(input_names[0]); input_t->Reshape({ batch_num, 3, 32, imgW }); input_t->copy_from_cpu(input.data()); this->predictor_->ZeroCopyRun(); std::vector rec_idx; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputTensor(output_names[0]); auto rec_idx_lod = output_t->lod()[0]; std::vector output_shape = output_t->shape(); int out_num = 1; for (int i = 0; i < output_shape.size(); ++i) { out_num *= output_shape[i]; } rec_idx.resize(out_num); output_t->copy_to_cpu(rec_idx.data());//output data std::vector predict_batch; auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]); auto predict_lod = output_t_1->lod()[0]; auto predict_shape = output_t_1->shape(); int out_num_1 = 1; for (int i = 0; i < predict_shape.size(); ++i) { out_num_1 *= predict_shape[i]; } predict_batch.resize(out_num_1); output_t_1->copy_to_cpu(predict_batch.data()); int argmax_idx; int blank = predict_shape[1]; for (int j = 0; j < rec_idx_lod.size() - 1; j++) { std::vector pred_idx; float score = 0.f; int count = 0; float max_value = 0.0f; for (int n = int(rec_idx_lod[j]); n < int(rec_idx_lod[j + 1]); n++) { pred_idx.push_back(int(rec_idx[n])); } if (pred_idx.size() < 1e-3) continue; index += 1; std::cout << index << "\t"; for (int n = 0; n < pred_idx.size(); n++) { std::cout << label_list_[pred_idx[n]]; } for (int n = predict_lod[j]; n < predict_lod[j + 1] - 1; n++) { argmax_idx = int(Utility::argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]])); max_value = predict_batch[n * predict_shape[1] + argmax_idx]; if (blank - 1 - argmax_idx > 1e-5) { score += max_value; count += 1; } } score /= count; std::cout << "\tscore: " << score << std::endl; } } } void CRNNRecognizer::LoadModel(const std::string &model_dir) { AnalysisConfig config; config.SetModel(model_dir + "/model", model_dir + "/params"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); // cache 10 different shapes for mkldnn to avoid memory leak config.SetMkldnnCacheCapacity(10); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } // false for zero copy tensor // true for commom tensor config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = CreatePaddlePredictor(config); } cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage, std::vector> box) { cv::Mat image; srcimage.copyTo(image); std::vector> points = box; int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]}; int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]}; int left = int(*std::min_element(x_collect, x_collect + 4)); int right = int(*std::max_element(x_collect, x_collect + 4)); int top = int(*std::min_element(y_collect, y_collect + 4)); int bottom = int(*std::max_element(y_collect, y_collect + 4)); cv::Mat img_crop; image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop); for (int i = 0; i < points.size(); i++) { points[i][0] -= left; points[i][1] -= top; } int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) + pow(points[0][1] - points[1][1], 2))); int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) + pow(points[0][1] - points[3][1], 2))); cv::Point2f pts_std[4]; pts_std[0] = cv::Point2f(0., 0.); pts_std[1] = cv::Point2f(img_crop_width, 0.); pts_std[2] = cv::Point2f(img_crop_width, img_crop_height); pts_std[3] = cv::Point2f(0.f, img_crop_height); cv::Point2f pointsf[4]; pointsf[0] = cv::Point2f(points[0][0], points[0][1]); pointsf[1] = cv::Point2f(points[1][0], points[1][1]); pointsf[2] = cv::Point2f(points[2][0], points[2][1]); pointsf[3] = cv::Point2f(points[3][0], points[3][1]); cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std); cv::Mat dst_img; cv::warpPerspective(img_crop, dst_img, M, cv::Size(img_crop_width, img_crop_height), cv::BORDER_REPLICATE); if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) { cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth()); cv::transpose(dst_img, srcCopy); cv::flip(srcCopy, srcCopy, 0); return srcCopy; } else { return dst_img; } } } // namespace PaddleOCR