web_service_det.py 2.9 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op

import logging
import numpy as np
import cv2
import base64
# from paddle_serving_app.reader import OCRReader
T
tink2123 已提交
21
from ocr_reader import OCRReader, DetResizeForTest, ArgsParser
T
tink2123 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
from paddle_serving_app.reader import Sequential, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes

_LOGGER = logging.getLogger()


class DetOp(Op):
    def init_op(self):
        self.det_preprocess = Sequential([
            DetResizeForTest(), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
                (2, 0, 1))
        ])
        self.filter_func = FilterBoxes(10, 10)
        self.post_func = DBPostProcess({
            "thresh": 0.3,
            "box_thresh": 0.5,
            "max_candidates": 1000,
            "unclip_ratio": 1.5,
            "min_size": 3
        })

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        data = base64.b64decode(input_dict["image"].encode('utf8'))
        self.raw_im = data
        data = np.fromstring(data, np.uint8)
        # Note: class variables(self.var) can only be used in process op mode
        im = cv2.imdecode(data, cv2.IMREAD_COLOR)
        self.ori_h, self.ori_w, _ = im.shape
        det_img = self.det_preprocess(im)
        _, self.new_h, self.new_w = det_img.shape
        return {"x": det_img[np.newaxis, :].copy()}, False, None, ""

littletomatodonkey's avatar
littletomatodonkey 已提交
57
    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
T
tink2123 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
        ratio_list = [
            float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
        ]
        dt_boxes_list = self.post_func(det_out, [ratio_list])
        dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
        out_dict = {"dt_boxes": str(dt_boxes)}

        return out_dict, None, ""


class OcrService(WebService):
    def get_pipeline_response(self, read_op):
        det_op = DetOp(name="det", input_ops=[read_op])
        return det_op


uci_service = OcrService(name="ocr")
T
tink2123 已提交
76 77
FLAGS = ArgsParser().parse_args()
uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
T
tink2123 已提交
78
uci_service.run_service()