Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
weixin_41840029
PaddleOCR
提交
0150e56b
P
PaddleOCR
项目概览
weixin_41840029
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0150e56b
编写于
8月 06, 2021
作者:
T
tink2123
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add det and rec service
上级
f933579c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
163 addition
and
0 deletion
+163
-0
deploy/pdserving/web_service_det.py
deploy/pdserving/web_service_det.py
+77
-0
deploy/pdserving/web_service_rec.py
deploy/pdserving/web_service_rec.py
+86
-0
未找到文件。
deploy/pdserving/web_service_det.py
0 → 100644
浏览文件 @
0150e56b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
cv2
import
base64
# from paddle_serving_app.reader import OCRReader
from
ocr_reader
import
OCRReader
,
DetResizeForTest
from
paddle_serving_app.reader
import
Sequential
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
,
GetRotateCropImage
,
SortedBoxes
_LOGGER
=
logging
.
getLogger
()
class
DetOp
(
Op
):
def
init_op
(
self
):
self
.
det_preprocess
=
Sequential
([
DetResizeForTest
(),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
self
.
filter_func
=
FilterBoxes
(
10
,
10
)
self
.
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
data
=
base64
.
b64decode
(
input_dict
[
"image"
].
encode
(
'utf8'
))
self
.
raw_im
=
data
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
# Note: class variables(self.var) can only be used in process op mode
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
self
.
ori_h
,
self
.
ori_w
,
_
=
im
.
shape
det_img
=
self
.
det_preprocess
(
im
)
_
,
self
.
new_h
,
self
.
new_w
=
det_img
.
shape
return
{
"x"
:
det_img
[
np
.
newaxis
,
:].
copy
()},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
det_out
=
fetch_dict
[
"save_infer_model/scale_0.tmp_1"
]
ratio_list
=
[
float
(
self
.
new_h
)
/
self
.
ori_h
,
float
(
self
.
new_w
)
/
self
.
ori_w
]
dt_boxes_list
=
self
.
post_func
(
det_out
,
[
ratio_list
])
dt_boxes
=
self
.
filter_func
(
dt_boxes_list
[
0
],
[
self
.
ori_h
,
self
.
ori_w
])
out_dict
=
{
"dt_boxes"
:
str
(
dt_boxes
)}
return
out_dict
,
None
,
""
class
OcrService
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
])
return
det_op
uci_service
=
OcrService
(
name
=
"ocr"
)
uci_service
.
prepare_pipeline_config
(
"config.yml"
)
uci_service
.
run_service
()
deploy/pdserving/web_service_rec.py
0 → 100644
浏览文件 @
0150e56b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle_serving_server.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
cv2
import
base64
# from paddle_serving_app.reader import OCRReader
from
ocr_reader
import
OCRReader
,
DetResizeForTest
from
paddle_serving_app.reader
import
Sequential
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
_LOGGER
=
logging
.
getLogger
()
class
RecOp
(
Op
):
def
init_op
(
self
):
self
.
ocr_reader
=
OCRReader
(
char_dict_path
=
"../../ppocr/utils/ppocr_keys_v1.txt"
)
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
raw_im
=
base64
.
b64decode
(
input_dict
[
"image"
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
raw_im
,
np
.
uint8
)
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
feed_list
=
[]
max_wh_ratio
=
0
## Many mini-batchs, the type of feed_data is list.
max_batch_size
=
6
# len(dt_boxes)
# If max_batch_size is 0, skipping predict stage
if
max_batch_size
==
0
:
return
{},
True
,
None
,
""
boxes_size
=
max_batch_size
rem
=
boxes_size
%
max_batch_size
h
,
w
=
im
.
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
_
,
w
,
h
=
self
.
ocr_reader
.
resize_norm_img
(
im
,
max_wh_ratio
).
shape
norm_img
=
self
.
ocr_reader
.
resize_norm_img
(
im
,
max_batch_size
)
norm_img
=
norm_img
[
np
.
newaxis
,
:]
feed
=
{
"x"
:
norm_img
.
copy
()}
feed_list
.
append
(
feed
)
return
feed_list
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_data
,
log_id
):
res_list
=
[]
if
isinstance
(
fetch_data
,
dict
):
if
len
(
fetch_data
)
>
0
:
rec_batch_res
=
self
.
ocr_reader
.
postprocess
(
fetch_data
,
with_score
=
True
)
for
res
in
rec_batch_res
:
res_list
.
append
(
res
[
0
])
elif
isinstance
(
fetch_data
,
list
):
for
one_batch
in
fetch_data
:
one_batch_res
=
self
.
ocr_reader
.
postprocess
(
one_batch
,
with_score
=
True
)
for
res
in
one_batch_res
:
res_list
.
append
(
res
[
0
])
res
=
{
"res"
:
str
(
res_list
)}
return
res
,
None
,
""
class
OcrService
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
read_op
])
return
rec_op
uci_service
=
OcrService
(
name
=
"ocr"
)
uci_service
.
prepare_pipeline_config
(
"config.yml"
)
uci_service
.
run_service
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录