utility.py 22.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66 67 68 69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
W
WenmuZhou 已提交
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
W
WenmuZhou 已提交
71 72
    parser.add_argument("--det_pse_scale", type=int, default=1)

W
WenmuZhou 已提交
73
    # params for text recognizer
L
LDOUBLEV 已提交
74 75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
76 77
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
78
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
79
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
80 81 82 83
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
84 85
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
86
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
87
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
88

J
Jethong 已提交
89 90 91 92 93 94 95 96 97
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
98
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
99
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey 已提交
100
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
J
Jethong 已提交
101
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
102

W
WenmuZhou 已提交
103 104 105 106 107
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
108
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
109 110 111
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
112
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
113
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
114
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
115

L
LDOUBLEV 已提交
116
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
117
    parser.add_argument("--use_mp", type=str2bool, default=False)
118 119
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
120

littletomatodonkey's avatar
littletomatodonkey 已提交
121
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
122
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
123

W
WenmuZhou 已提交
124
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
125
    return parser
W
WenmuZhou 已提交
126

127

128
def parse_args():
W
WenmuZhou 已提交
129
    parser = init_args()
L
LDOUBLEV 已提交
130 131 132
    return parser.parse_args()


W
WenmuZhou 已提交
133 134 135 136 137
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
138
    elif mode == 'rec':
W
WenmuZhou 已提交
139
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
140 141
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
142 143
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
144 145 146 147

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
148 149
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
150
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
151
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
152
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
153 154
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
155

W
WenmuZhou 已提交
156
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
157

L
LDOUBLEV 已提交
158 159 160 161 162 163 164 165 166 167
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
168
    if args.use_gpu:
169 170 171 172 173
        gpu_id = get_infer_gpuid()
        if gpu_id is None:
            raise ValueError(
                "Not found GPU in current device. Please check your device or set args.use_gpu as False"
            )
W
WenmuZhou 已提交
174
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
175 176
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
D
Double_V 已提交
177
                precision_mode=precision,
L
LDOUBLEV 已提交
178
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
179 180
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
181
        if mode == "det":
L
LDOUBLEV 已提交
182 183
            min_input_shape = {
                "x": [1, 3, 50, 50],
F
fengshuai03 已提交
184 185
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
L
LDOUBLEV 已提交
186
                "conv2d_59.tmp_0": [1, 96, 20, 20],
F
fengshuai03 已提交
187 188 189 190 191 192
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
L
LDOUBLEV 已提交
193
                "elementwise_add_7": [1, 56, 2, 2],
F
fengshuai03 已提交
194
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
L
LDOUBLEV 已提交
195 196 197
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
F
fengshuai03 已提交
198 199
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
L
LDOUBLEV 已提交
200
                "conv2d_59.tmp_0": [1, 96, 400, 400],
F
fengshuai03 已提交
201
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
L
LDOUBLEV 已提交
202
                "conv2d_124.tmp_0": [1, 256, 400, 400],
F
fengshuai03 已提交
203 204 205 206
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
L
LDOUBLEV 已提交
207
                "elementwise_add_7": [1, 56, 400, 400],
F
fengshuai03 已提交
208
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
L
LDOUBLEV 已提交
209 210 211
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
F
fengshuai03 已提交
212 213
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
L
LDOUBLEV 已提交
214
                "conv2d_59.tmp_0": [1, 96, 160, 160],
F
fengshuai03 已提交
215 216
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
L
LDOUBLEV 已提交
217
                "conv2d_124.tmp_0": [1, 256, 160, 160],
F
fengshuai03 已提交
218 219 220
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
L
LDOUBLEV 已提交
221
                "elementwise_add_7": [1, 56, 40, 40],
F
fengshuai03 已提交
222
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
L
LDOUBLEV 已提交
223
            }
F
fengshuai03 已提交
224
            min_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
225 226 227 228
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
F
fengshuai03 已提交
229 230
            }
            max_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
231 232 233 234
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
F
fengshuai03 已提交
235 236
            }
            opt_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
237 238 239 240
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
F
fengshuai03 已提交
241 242 243 244
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
L
LDOUBLEV 已提交
245
        elif mode == "rec":
L
LDOUBLEV 已提交
246
            min_input_shape = {"x": [1, 3, 32, 10]}
L
LDOUBLEV 已提交
247 248 249
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
L
LDOUBLEV 已提交
250
            min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
251 252
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
253 254 255 256
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
257 258 259
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
260 261
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
262 263 264
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
265
            # default cpu threads as 10
L
LDOUBLEV 已提交
266
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
267 268 269 270
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
L
LDOUBLEV 已提交
271 272
            if args.precision == "fp16":
                config.enable_mkldnn_bfloat16()
L
LDOUBLEV 已提交
273 274
    # enable memory optim
    config.enable_memory_optim()
L
LDOUBLEV 已提交
275
    config.disable_glog_info()
W
WenmuZhou 已提交
276

W
WenmuZhou 已提交
277
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
278
    if mode == 'table':
W
WenmuZhou 已提交
279
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
280
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
281
    config.switch_ir_optim(True)
282

W
WenmuZhou 已提交
283 284
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
285 286
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
287
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
288 289 290
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
291
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
292
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
293
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
294 295


L
LDOUBLEV 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309
def get_infer_gpuid():
    cmd = "nvidia-smi"
    res = os.popen(cmd).readlines()
    if len(res) == 0:
        return None
    cmd = "env | grep CUDA_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
326
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
327 328 329 330
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
331
    return src_im
L
LDOUBLEV 已提交
332 333


L
LDOUBLEV 已提交
334 335
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
336
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
337 338 339 340 341
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
342 343
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
344 345


W
WenmuZhou 已提交
346 347 348 349 350
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
351
             font_path="./doc/fonts/simfang.ttf"):
352 353 354
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
355
        image(Image|array): RGB image
356 357 358 359
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
360
        font_path: the path of font which is used to draw text
361 362 363
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
364 365
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
366 367 368 369
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
370
            continue
W
WenmuZhou 已提交
371
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
372
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
373
    if txts is not None:
L
LDOUBLEV 已提交
374
        img = np.array(resize_img(image, input_size=600))
375
        txt_img = text_visual(
W
WenmuZhou 已提交
376 377 378 379 380 381
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
382
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
383 384
        return img
    return image
385 386


W
WenmuZhou 已提交
387 388 389 390 391 392
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
393 394 395
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
396 397

    import random
L
LDOUBLEV 已提交
398

399 400 401
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
402 403 404
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
405 406
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
407
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
408 409 410 411 412 413 414 415 416 417
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
418 419
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
420
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
421 422 423
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
424 425
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
426 427 428
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
429
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
430 431
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
432 433 434 435
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
436 437 438
    return np.array(img_show)


439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
463 464 465 466 467 468
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
469 470 471 472 473 474 475
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
476
        font_path: the path of font which is used to draw text
477 478 479 480 481 482 483 484 485
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
486 487
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
488
        return blank_img, draw_txt
L
LDOUBLEV 已提交
489

490 491 492 493
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
494
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
495 496 497

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
498
    count, index = 1, 0
499 500
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
501
        if scores[idx] < threshold or math.isnan(scores[idx]):
502 503 504 505 506 507 508 509 510 511 512
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
513
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
514 515 516 517 518
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
519
            count += 1
520 521 522
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
523
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
524
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
525
        # whether add new blank img or not
L
LDOUBLEV 已提交
526
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
527 528 529
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
530
        count += 1
531 532 533 534 535 536
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
537 538


D
dyning 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
593
if __name__ == '__main__':
L
LDOUBLEV 已提交
594
    pass