whl.md 19.9 KB
Newer Older
W
WenmuZhou 已提交
1 2
# paddleocr package使用说明

W
WenmuZhou 已提交
3
## 1 快速上手
W
WenmuZhou 已提交
4

W
WenmuZhou 已提交
5
### 1.1 安装whl包
W
WenmuZhou 已提交
6 7 8

pip安装
```bash
W
WenmuZhou 已提交
9
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
W
WenmuZhou 已提交
10 11 12 13
```

本地构建并安装
```bash
W
WenmuZhou 已提交
14 15
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x是paddleocr的版本号
W
WenmuZhou 已提交
16 17
```

W
WenmuZhou 已提交
18 19 20 21 22
## 2 使用
### 2.1 代码使用
paddleocr whl包会自动下载ppocr轻量级模型作为默认模型,可以根据第3节**自定义模型**进行自定义更换。

* 检测+方向分类器+识别全流程
W
WenmuZhou 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
```
结果可视化

<div align="center">
    <img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>


* 检测+识别
W
WenmuZhou 已提交
58 59
```python
from paddleocr import PaddleOCR, draw_ocr
W
WenmuZhou 已提交
60
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
W
WenmuZhou 已提交
81
......
W
WenmuZhou 已提交
82 83 84 85 86 87 88
```
结果可视化

<div align="center">
    <img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>

W
WenmuZhou 已提交
89

W
WenmuZhou 已提交
90
* 方向分类器+识别
W
WenmuZhou 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path, det=False, cls=True)
for line in result:
    print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

W
WenmuZhou 已提交
104 105 106
* 单独执行检测
```python
from paddleocr import PaddleOCR, draw_ocr
W
WenmuZhou 已提交
107
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
108
img_path = 'PaddleOCR/doc/imgs/11.jpg'
W
WenmuZhou 已提交
109
result = ocr.ocr(img_path, rec=False)
W
WenmuZhou 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
for line in result:
    print(line)

# 显示结果
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
W
WenmuZhou 已提交
126
......
W
WenmuZhou 已提交
127 128 129 130 131 132 133 134 135 136 137
```
结果可视化


<div align="center">
    <img src="../imgs_results/whl/11_det.jpg" width="800">
</div>

* 单独执行识别
```python
from paddleocr import PaddleOCR
W
WenmuZhou 已提交
138
ocr = PaddleOCR() # need to run only once to download and load model into memory
W
WenmuZhou 已提交
139
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
W
WenmuZhou 已提交
140
result = ocr.ocr(img_path, det=False)
W
WenmuZhou 已提交
141 142 143 144 145 146 147 148
for line in result:
    print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

W
WenmuZhou 已提交
149
* 单独执行方向分类器
W
WenmuZhou 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(use_angle_cls=True) # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path, det=False, rec=False, cls=True)
for line in result:
    print(line)
```
结果是一个list,每个item只包含分类结果和分类置信度
```bash
['0', 0.9999924]
```

W
WenmuZhou 已提交
163
### 2.2 通过命令行使用
W
WenmuZhou 已提交
164 165 166 167 168 169

查看帮助信息
```bash
paddleocr -h
```

W
WenmuZhou 已提交
170
* 检测+方向分类器+识别全流程
W
WenmuZhou 已提交
171
```bash
W
WenmuZhou 已提交
172
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --use_angle_cls true
W
WenmuZhou 已提交
173 174 175 176 177 178 179 180 181 182
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
......
```

* 检测+识别
W
WenmuZhou 已提交
183 184 185 186 187 188 189 190
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
W
WenmuZhou 已提交
191
......
W
WenmuZhou 已提交
192 193
```

W
WenmuZhou 已提交
194
* 方向分类器+识别
W
WenmuZhou 已提交
195
```bash
W
WenmuZhou 已提交
196
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --use_angle_cls true --det false
W
WenmuZhou 已提交
197 198 199 200 201 202 203
```

结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

W
WenmuZhou 已提交
204 205 206 207 208 209 210 211 212
* 单独执行检测
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
W
WenmuZhou 已提交
213
......
W
WenmuZhou 已提交
214 215 216 217 218 219 220 221 222 223 224 225
```

* 单独执行识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --det false
```

结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

W
WenmuZhou 已提交
226
* 单独执行方向分类器
W
WenmuZhou 已提交
227
```bash
W
WenmuZhou 已提交
228
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --use_angle_cls true --det false --rec false
W
WenmuZhou 已提交
229 230 231 232 233 234 235
```

结果是一个list,每个item只包含分类结果和分类置信度
```bash
['0', 0.9999924]
```

W
WenmuZhou 已提交
236
## 3 自定义模型
W
WenmuZhou 已提交
237
当内置模型无法满足需求时,需要使用到自己训练的模型。
W
WenmuZhou 已提交
238
首先,参照[inference.md](./inference.md) 第一节转换将检测、分类和识别模型转换为inference模型,然后按照如下方式使用
W
WenmuZhou 已提交
239

W
WenmuZhou 已提交
240
### 3.1 代码使用
W
WenmuZhou 已提交
241 242
```python
from paddleocr import PaddleOCR, draw_ocr
W
WenmuZhou 已提交
243 244
# 模型路径下必须含有model和params文件
ocr = PaddleOCR(det_model_dir='{your_det_model_dir}', rec_model_dir='{your_rec_model_dir}', rec_char_dict_path='{your_rec_char_dict_path}', cls_model_dir='{your_cls_model_dir}', use_angle_cls=True)
W
WenmuZhou 已提交
245
img_path = 'PaddleOCR/doc/imgs/11.jpg'
W
WenmuZhou 已提交
246
result = ocr.ocr(img_path, cls=True)
W
WenmuZhou 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

W
WenmuZhou 已提交
261
### 3.2 通过命令行使用
W
WenmuZhou 已提交
262 263

```bash
W
WenmuZhou 已提交
264
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --det_model_dir {your_det_model_dir} --rec_model_dir {your_rec_model_dir} --rec_char_dict_path {your_rec_char_dict_path} --cls_model_dir {your_cls_model_dir} --use_angle_cls true
W
WenmuZhou 已提交
265 266
```

W
WenmuZhou 已提交
267
## 4 使用网络图片或者numpy数组作为输入
W
WenmuZhou 已提交
268

W
WenmuZhou 已提交
269
### 4.1 网络图片
W
WenmuZhou 已提交
270

W
WenmuZhou 已提交
271
- 代码使用
W
WenmuZhou 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
W
WenmuZhou 已提交
292
- 命令行模式
W
WenmuZhou 已提交
293 294 295 296
```bash
paddleocr --image_dir http://n.sinaimg.cn/ent/transform/w630h933/20171222/o111-fypvuqf1838418.jpg --use_angle_cls=true
```

W
WenmuZhou 已提交
297
### 4.2 numpy数组
W
WenmuZhou 已提交
298 299 300 301 302 303 304 305 306
仅通过代码使用时支持numpy数组作为输入
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持中英文、英文、法语、德语、韩语、日语,可以通过修改lang参数进行切换
# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
img = cv2.imread(img_path)
# img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY), 如果你自己训练的模型支持灰度图,可以将这句话的注释取消
W
WenmuZhou 已提交
307
result = ocr.ocr(img, cls=True)
W
WenmuZhou 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

W
WenmuZhou 已提交
322
## 5 参数说明
W
WenmuZhou 已提交
323 324 325 326 327 328 329

| 字段                    | 说明                                                                                                                                                                                                                 | 默认值                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | 是否使用GPU                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | 初始化占用的GPU内存大小                                                                                                                                                                                              | 8000M                   |
| image_dir               | 通过命令行调用时执行预测的图片或文件夹路径                                                                                                                                                                           |                         |
| det_algorithm           | 使用的检测算法类型                                                                                                                                                                                                   | DB                      |
W
WenmuZhou 已提交
330
| det_model_dir          |  检测模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/det`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 |   None        |
W
WenmuZhou 已提交
331 332 333 334 335 336 337 338
| det_max_side_len        | 检测算法前向时图片长边的最大尺寸,当长边超出这个值时会将长边resize到这个大小,短边等比例缩放                                                                                                                         | 960                     |
| det_db_thresh           | DB模型输出预测图的二值化阈值                                                                                                                                                                                         | 0.3                     |
| det_db_box_thresh       | DB模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                           | 0.5                     |
| det_db_unclip_ratio     | DB模型输出框扩大的比例                                                                                                                                                                                               | 2                       |
| det_east_score_thresh   | EAST模型输出预测图的二值化阈值                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | EAST模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | EAST模型输出框NMS的阈值                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | 使用的识别算法类型                                                                                                                                                                                                   | CRNN                    |
W
WenmuZhou 已提交
339
| rec_model_dir          | 识别模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/rec`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件 | None |
W
WenmuZhou 已提交
340
| rec_image_shape         | 识别算法的输入图片尺寸                                                                                                                                                                                             | "3,32,320"              |
W
WenmuZhou 已提交
341
| rec_char_type           | 识别算法的字符类型,中英文(ch)、英文(en)、法语(french)、德语(german)、韩语(korean)、日语(japan)                                                                                                                                                                               | ch                      |
W
WenmuZhou 已提交
342
| rec_batch_num           | 进行识别时,同时前向的图片数                                                                                                                                                                                         | 30                      |
W
WenmuZhou 已提交
343 344
| max_text_length         | 识别算法能识别的最大文字长度                                                                                                                                                                                         | 25                      |
| rec_char_dict_path      | 识别模型字典路径,当rec_model_dir使用方式2传参时需要修改为自己的字典路径                                                                                                                                                | ./ppocr/utils/ppocr_keys_v1.txt                        |
W
WenmuZhou 已提交
345
| use_space_char          | 是否识别空格                                                                                                                                                                                                         | TRUE                    |
W
WenmuZhou 已提交
346
| drop_score          | 对输出按照分数(来自于识别模型)进行过滤,低于此分数的不返回                                                                                                                                                                                                         | 0.5                    |
W
WenmuZhou 已提交
347 348 349 350 351
| use_angle_cls          | 是否加载分类模型                                                                                                                                                                                                         | FALSE                    |
| cls_model_dir          | 分类模型所在文件夹。传参方式有两种,1. None: 自动下载内置模型到 `~/.paddleocr/cls`;2.自己转换好的inference模型路径,模型路径下必须包含model和params文件                                                                                 | None                    |
| cls_image_shape          | 分类算法的输入图片尺寸                                                                           | "3, 48, 192"                    |
| label_list          | 分类算法的标签列表                                                                           | ['0', '180']                  |
| cls_batch_num          | 进行分类时,同时前向的图片数                                                                          |30                 |
W
WenmuZhou 已提交
352
| enable_mkldnn           | 是否启用mkldnn                                                                                                                                                                                                       | FALSE                   |
W
WenmuZhou 已提交
353
| use_zero_copy_run           | 是否通过zero_copy_run的方式进行前向                                                                                                                                                                               | FALSE                   |
W
WenmuZhou 已提交
354
| lang                     | 模型语言类型,目前支持 目前支持中英文(ch)、英文(en)、法语(french)、德语(german)、韩语(korean)、日语(japan)                                                                                                                                                                                               | ch                    |
W
WenmuZhou 已提交
355 356
| det                     | 前向时使用启动检测                                                                                                                                                                                                   | TRUE                    |
| rec                     | 前向时是否启动识别                                                                                                                                                                                                   | TRUE                    |
W
WenmuZhou 已提交
357
| cls                     | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类)                                                                                                                                                                                                | FALSE                    |