whl.md 18.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# paddleocr package使用说明

## 快速上手

### 安装whl包

pip安装
```bash
pip install paddleocr
```

本地构建并安装
```bash
python setup.py bdist_wheel
W
WenmuZhou 已提交
15
pip install dist/paddleocr-0.0.3-py3-none-any.whl
W
WenmuZhou 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
```
### 1. 代码使用

* 检测+识别全流程
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR(model_storage_directory='./model') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
[[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]], ['每瓶22元,1000瓶起订)', 0.97444016]]
[[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]], ['【品牌】', 0.8187138]]
[[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]], [':代加工方式/OEMODM', 0.9421848]]
[[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]], ['【品名】', 0.76008326]]
[[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]], [':纯臻营养护发素', 0.9633639]]
[[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]], ['【产品编号】', 0.84101385]]
[[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]], ['1:YM-X-3011', 0.8621878]]
[[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]], ['ODM OEM', 0.9084018]]
[[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]], ['【净含量】:220ml', 0.9278281]]
[[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]], ['【适用人群】', 0.90901047]]
[[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]], [':适合所有肤质', 0.95465785]]
[[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]], ['【主要成分】', 0.88936955]]
[[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]], ['鲸蜡硬脂醇', 0.9447544]]
[[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]], ['燕麦B-葡聚', 0.89748293]]
[[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]], [' 椰油酰胺丙基甜菜碱', 0.902023]]
[[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]], ['糖、', 0.985203]]
[[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]], ['泛服', 0.44537082]]
[[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]], ['(成品包材)', 0.9834532]]
[[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]], ['【主要功能】', 0.88684446]]
[[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]], [':可紧致头发磷层', 0.9342501]]
[[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]], ['琴,从而达到', 0.8253762]]
[[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]], ['即时持久改善头发光泽的效果,给干燥的头', 0.97785276]]
[[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]], ['发足够的滋养', 0.9577897]]
```
结果可视化

<div align="center">
    <img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>

* 单独执行检测
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR(model_storage_directory='./model') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# 显示结果
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]]
[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]]
[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]]
[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]]
[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]]
[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]]
[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]]
[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]]
[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]]
[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]]
[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]]
[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]]
[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]]
[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]]
[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]]
[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]]
[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]]
[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]]
[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]]
[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]]
[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]]
[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]]
[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]]
```
结果可视化


<div align="center">
    <img src="../imgs_results/whl/11_det.jpg" width="800">
</div>

* 单独执行识别
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(model_storage_directory='./model') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path,det=False)
for line in result:
    print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

### 通过命令行使用

查看帮助信息
```bash
paddleocr -h
```

* 检测+识别全流程
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
[[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]], ['每瓶22元,1000瓶起订)', 0.97444016]]
[[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]], ['【品牌】', 0.8187138]]
[[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]], [':代加工方式/OEMODM', 0.9421848]]
[[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]], ['【品名】', 0.76008326]]
[[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]], [':纯臻营养护发素', 0.9633639]]
[[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]], ['【产品编号】', 0.84101385]]
[[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]], ['1:YM-X-3011', 0.8621878]]
[[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]], ['ODM OEM', 0.9084018]]
[[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]], ['【净含量】:220ml', 0.9278281]]
[[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]], ['【适用人群】', 0.90901047]]
[[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]], [':适合所有肤质', 0.95465785]]
[[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]], ['【主要成分】', 0.88936955]]
[[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]], ['鲸蜡硬脂醇', 0.9447544]]
[[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]], ['燕麦B-葡聚', 0.89748293]]
[[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]], [' 椰油酰胺丙基甜菜碱', 0.902023]]
[[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]], ['糖、', 0.985203]]
[[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]], ['泛服', 0.44537082]]
[[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]], ['(成品包材)', 0.9834532]]
[[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]], ['【主要功能】', 0.88684446]]
[[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]], [':可紧致头发磷层', 0.9342501]]
[[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]], ['琴,从而达到', 0.8253762]]
[[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]], ['即时持久改善头发光泽的效果,给干燥的头', 0.97785276]]
[[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]], ['发足够的滋养', 0.9577897]]
```

* 单独执行检测
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]]
[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]]
[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]]
[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]]
[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]]
[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]]
[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]]
[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]]
[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]]
[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]]
[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]]
[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]]
[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]]
[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]]
[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]]
[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]]
[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]]
[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]]
[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]]
[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]]
[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]]
[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]]
[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]]
```

* 单独执行识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --det false
```

结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

## 参数说明

| 字段                    | 说明                                                                                                                                                                                                                 | 默认值                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | 是否使用GPU                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | 初始化占用的GPU内存大小                                                                                                                                                                                              | 8000M                   |
| image_dir               | 通过命令行调用时执行预测的图片或文件夹路径                                                                                                                                                                           |                         |
| det_algorithm           | 使用的检测算法类型                                                                                                                                                                                                   | DB                      |
| det_model_name          | 有两种使用方式: 1. 检测算法名称,此名称必须在支持列表内(目前只内置了ch_det_mv3_db),传入错误参数时会显示支持的列表 2. 自己转换好的inference模型路径,此时模型路径下必须包含model和params文件。选择此方式时,需要手动指定det_algorithm的值 | ch_det_mv3_db           |
| det_max_side_len        | 检测算法前向时图片长边的最大尺寸,当长边超出这个值时会将长边resize到这个大小,短边等比例缩放                                                                                                                         | 960                     |
| det_db_thresh           | DB模型输出预测图的二值化阈值                                                                                                                                                                                         | 0.3                     |
| det_db_box_thresh       | DB模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                           | 0.5                     |
| det_db_unclip_ratio     | DB模型输出框扩大的比例                                                                                                                                                                                               | 2                       |
| det_east_score_thresh   | EAST模型输出预测图的二值化阈值                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | EAST模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | EAST模型输出框NMS的阈值                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | 使用的识别算法类型                                                                                                                                                                                                   | CRNN                    |
| rec_model_name          | 有两种使用方式: 1. 识别算法名称,此名称必须在支持列表内(目前支持CRNN,Rosetta,STAR,RARE等算法,但是内置的只有ch_rec_mv3_crnn_enhance),传入错误参数时会显示支持的列表 2. 自己转换好的inference模型路径,此时模型路径下必须包含model和params文件。选择此方式时,需要手动指定rec_algorithm的值 | ch_rec_mv3_crnn_enhance |
| rec_image_shape         | 识别算法的输入图片尺寸                                                                                                                                                                                             | "3,32,320"              |
| rec_char_type           | 识别算法的字符类型,中文(ch)或英文(en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | 进行识别时,同时前向的图片数                                                                                                                                                                                         | 30                      |
| rec_char_dict_path      | 识别模型字典路径,当rec_model_name使用方式2传参时需要修改为自己的路径                                                                                                                                                |                         |
| use_space_char          | 是否识别空格                                                                                                                                                                                                         | TRUE                    |
| enable_mkldnn           | 是否启用mkldnn                                                                                                                                                                                                       | FALSE                   |
| model_storage_directory | 下载模型保存路径                                                                                                                                                                                                     | ~/.paddleocr                |
| det                     | 前向时使用启动检测                                                                                                                                                                                                   | TRUE                    |
| rec                     | 前向时是否启动识别                                                                                                                                                                                                   | TRUE                    |