det_resnet_vd.py 11.4 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import paddle
W
WenmuZhou 已提交
20
from paddle import ParamAttr
21
import paddle.nn as nn
W
WenmuZhou 已提交
22
import paddle.nn.functional as F
L
LDOUBLEV 已提交
23

z37757's avatar
z37757 已提交
24 25 26 27
from paddle.vision.ops import DeformConv2D
from paddle.regularizer import L2Decay
from paddle.nn.initializer import Normal, Constant, XavierUniform

W
wangjingyeye 已提交
28
__all__ = ["ResNet_vd", "ConvBNLayer", "DeformableConvV2"]
L
LDOUBLEV 已提交
29 30


z37757's avatar
z37757 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
class DeformableConvV2(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 lr_scale=1,
                 regularizer=None,
                 skip_quant=False,
                 dcn_bias_regularizer=L2Decay(0.),
                 dcn_bias_lr_scale=2.):
        super(DeformableConvV2, self).__init__()
        self.offset_channel = 2 * kernel_size**2 * groups
        self.mask_channel = kernel_size**2 * groups

        if bias_attr:
            # in FCOS-DCN head, specifically need learning_rate and regularizer
            dcn_bias_attr = ParamAttr(
                initializer=Constant(value=0),
                regularizer=dcn_bias_regularizer,
                learning_rate=dcn_bias_lr_scale)
        else:
            # in ResNet backbone, do not need bias
            dcn_bias_attr = False
        self.conv_dcn = DeformConv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2 * dilation,
            dilation=dilation,
            deformable_groups=groups,
            weight_attr=weight_attr,
            bias_attr=dcn_bias_attr)

        if lr_scale == 1 and regularizer is None:
            offset_bias_attr = ParamAttr(initializer=Constant(0.))
        else:
            offset_bias_attr = ParamAttr(
                initializer=Constant(0.),
                learning_rate=lr_scale,
                regularizer=regularizer)
        self.conv_offset = nn.Conv2D(
            in_channels,
            groups * 3 * kernel_size**2,
            kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            weight_attr=ParamAttr(initializer=Constant(0.0)),
            bias_attr=offset_bias_attr)
        if skip_quant:
            self.conv_offset.skip_quant = True

    def forward(self, x):
        offset_mask = self.conv_offset(x)
        offset, mask = paddle.split(
            offset_mask,
            num_or_sections=[self.offset_channel, self.mask_channel],
            axis=1)
        mask = F.sigmoid(mask)
        y = self.conv_dcn(x, offset, mask=mask)
        return y


W
WenmuZhou 已提交
100
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
101 102 103 104 105 106
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
W
wangjingyeye 已提交
107
                 dcn_groups=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
108
                 is_vd_mode=False,
z37757's avatar
z37757 已提交
109 110
                 act=None,
                 is_dcn=False):
W
WenmuZhou 已提交
111
        super(ConvBNLayer, self).__init__()
112 113

        self.is_vd_mode = is_vd_mode
W
WenmuZhou 已提交
114
        self._pool2d_avg = nn.AvgPool2D(
115
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
z37757's avatar
z37757 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        if not is_dcn:
            self._conv = nn.Conv2D(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=(kernel_size - 1) // 2,
                groups=groups,
                bias_attr=False)
        else:
            self._conv = DeformableConvV2(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=(kernel_size - 1) // 2,
W
wangjingyeye 已提交
132
                groups=dcn_groups,  #groups,
z37757's avatar
z37757 已提交
133
                bias_attr=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
134
        self._batch_norm = nn.BatchNorm(out_channels, act=act)
W
WenmuZhou 已提交
135

136 137 138 139 140 141
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
W
WenmuZhou 已提交
142 143


144
class BottleneckBlock(nn.Layer):
z37757's avatar
z37757 已提交
145 146 147 148 149 150 151 152
    def __init__(
            self,
            in_channels,
            out_channels,
            stride,
            shortcut=True,
            if_first=False,
            is_dcn=False, ):
W
WenmuZhou 已提交
153
        super(BottleneckBlock, self).__init__()
154

W
WenmuZhou 已提交
155 156 157 158
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
159
            act='relu')
W
WenmuZhou 已提交
160 161 162 163
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
164
            stride=stride,
z37757's avatar
z37757 已提交
165
            act='relu',
W
wangjingyeye 已提交
166 167
            is_dcn=is_dcn,
            dcn_groups=2)
W
WenmuZhou 已提交
168 169 170 171
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
172
            act=None)
L
LDOUBLEV 已提交
173

174 175 176 177 178 179
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
                stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
180
                is_vd_mode=False if if_first else True)
181 182 183 184 185 186 187

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WenmuZhou 已提交
188

189 190 191 192
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
W
WenmuZhou 已提交
193 194
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
W
WenmuZhou 已提交
195
        return y
L
LDOUBLEV 已提交
196 197


W
WenmuZhou 已提交
198
class BasicBlock(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
199 200 201 202 203 204 205
    def __init__(
            self,
            in_channels,
            out_channels,
            stride,
            shortcut=True,
            if_first=False, ):
W
WenmuZhou 已提交
206
        super(BasicBlock, self).__init__()
207
        self.stride = stride
W
WenmuZhou 已提交
208 209 210 211
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
212
            stride=stride,
littletomatodonkey's avatar
littletomatodonkey 已提交
213
            act='relu')
W
WenmuZhou 已提交
214 215 216 217
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
littletomatodonkey's avatar
littletomatodonkey 已提交
218
            act=None)
W
WenmuZhou 已提交
219

220 221 222 223 224 225
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
226
                is_vd_mode=False if if_first else True)
227 228 229 230 231 232

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
W
WenmuZhou 已提交
233

234 235 236 237
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
W
WenmuZhou 已提交
238 239
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
240
        return y
W
WenmuZhou 已提交
241 242


W
wangjingyeye 已提交
243
class ResNet_vd(nn.Layer):
z37757's avatar
z37757 已提交
244 245 246 247 248 249
    def __init__(self,
                 in_channels=3,
                 layers=50,
                 dcn_stage=None,
                 out_indices=None,
                 **kwargs):
W
wangjingyeye 已提交
250
        super(ResNet_vd, self).__init__()
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

z37757's avatar
z37757 已提交
272 273 274 275 276 277 278
        self.dcn_stage = dcn_stage if dcn_stage is not None else [
            False, False, False, False
        ]
        self.out_indices = out_indices if out_indices is not None else [
            0, 1, 2, 3
        ]

279 280 281 282 283
        self.conv1_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=32,
            kernel_size=3,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
284
            act='relu')
285 286 287 288 289
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
290
            act='relu')
291 292 293 294 295
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
296
            act='relu')
W
WenmuZhou 已提交
297
        self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
298 299 300 301 302 303 304

        self.stages = []
        self.out_channels = []
        if layers >= 50:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
z37757's avatar
z37757 已提交
305
                is_dcn = self.dcn_stage[block]
306 307 308 309 310 311 312 313 314
                for i in range(depth[block]):
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
z37757's avatar
z37757 已提交
315 316
                            if_first=block == i == 0,
                            is_dcn=is_dcn))
317 318
                    shortcut = True
                    block_list.append(bottleneck_block)
z37757's avatar
z37757 已提交
319 320
                if block in self.out_indices:
                    self.out_channels.append(num_filters[block] * 4)
321 322 323 324 325
                self.stages.append(nn.Sequential(*block_list))
        else:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
z37757's avatar
z37757 已提交
326
                # is_dcn = self.dcn_stage[block]
327 328 329 330 331 332 333 334 335
                for i in range(depth[block]):
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
littletomatodonkey's avatar
littletomatodonkey 已提交
336
                            if_first=block == i == 0))
337 338
                    shortcut = True
                    block_list.append(basic_block)
z37757's avatar
z37757 已提交
339 340
                if block in self.out_indices:
                    self.out_channels.append(num_filters[block])
341
                self.stages.append(nn.Sequential(*block_list))
W
WenmuZhou 已提交
342

343 344 345 346 347 348
    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        out = []
z37757's avatar
z37757 已提交
349
        for i, block in enumerate(self.stages):
350
            y = block(y)
z37757's avatar
z37757 已提交
351 352
            if i in self.out_indices:
                out.append(y)
353
        return out