det_resnet_vd.py 10.4 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19 20 21
from paddle import nn
from paddle.nn import functional as F
from paddle import ParamAttr
L
LDOUBLEV 已提交
22 23 24 25

__all__ = ["ResNet"]


W
WenmuZhou 已提交
26 27
class ResNet(nn.Layer):
    def __init__(self, in_channels=3, layers=50, **kwargs):
L
LDOUBLEV 已提交
28 29 30 31 32
        """
        the Resnet backbone network for detection module.
        Args:
            params(dict): the super parameters for network build
        """
W
WenmuZhou 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        super(ResNet, self).__init__()
        supported_layers = {
            18: {
                'depth': [2, 2, 2, 2],
                'block_class': BasicBlock
            },
            34: {
                'depth': [3, 4, 6, 3],
                'block_class': BasicBlock
            },
            50: {
                'depth': [3, 4, 6, 3],
                'block_class': BottleneckBlock
            },
            101: {
                'depth': [3, 4, 23, 3],
                'block_class': BottleneckBlock
            },
            152: {
                'depth': [3, 8, 36, 3],
                'block_class': BottleneckBlock
            },
            200: {
                'depth': [3, 12, 48, 3],
                'block_class': BottleneckBlock
            }
        }
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
        is_3x3 = True

        depth = supported_layers[layers]['depth']
        block_class = supported_layers[layers]['block_class']

L
LDOUBLEV 已提交
67 68
        num_filters = [64, 128, 256, 512]

W
WenmuZhou 已提交
69
        conv = []
L
LDOUBLEV 已提交
70
        if is_3x3 == False:
W
WenmuZhou 已提交
71 72 73 74 75 76 77
            conv.append(
                ConvBNLayer(
                    in_channels=in_channels,
                    out_channels=64,
                    kernel_size=7,
                    stride=2,
                    act='relu'))
L
LDOUBLEV 已提交
78
        else:
W
WenmuZhou 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            conv.append(
                ConvBNLayer(
                    in_channels=3,
                    out_channels=32,
                    kernel_size=3,
                    stride=2,
                    act='relu',
                    name='conv1_1'))
            conv.append(
                ConvBNLayer(
                    in_channels=32,
                    out_channels=32,
                    kernel_size=3,
                    stride=1,
                    act='relu',
                    name='conv1_2'))
            conv.append(
                ConvBNLayer(
                    in_channels=32,
                    out_channels=64,
                    kernel_size=3,
                    stride=1,
                    act='relu',
                    name='conv1_3'))
        self.conv1 = nn.Sequential(*conv)
        self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.stages = []
        self.out_channels = []
        in_ch = 64
        for block_index in range(len(depth)):
            block_list = []
            for i in range(depth[block_index]):
                if layers >= 50:
                    if layers in [101, 152, 200] and block_index == 2:
L
LDOUBLEV 已提交
113
                        if i == 0:
W
WenmuZhou 已提交
114
                            conv_name = "res" + str(block_index + 2) + "a"
L
LDOUBLEV 已提交
115
                        else:
W
WenmuZhou 已提交
116 117
                            conv_name = "res" + str(block_index +
                                                    2) + "b" + str(i)
L
LDOUBLEV 已提交
118
                    else:
W
WenmuZhou 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                        conv_name = "res" + str(block_index + 2) + chr(97 + i)
                else:
                    conv_name = "res" + str(block_index + 2) + chr(97 + i)
                block_list.append(
                    block_class(
                        in_channels=in_ch,
                        out_channels=num_filters[block_index],
                        stride=2 if i == 0 and block_index != 0 else 1,
                        if_first=block_index == i == 0,
                        name=conv_name))
                in_ch = block_list[-1].out_channels
            self.out_channels.append(in_ch)
            self.stages.append(nn.Sequential(*block_list))
        for i, stage in enumerate(self.stages):
            self.add_sublayer(sublayer=stage, name="stage{}".format(i))

    def forward(self, x):
        x = self.conv1(x)
        x = self.pool(x)
        out_list = []
        for stage in self.stages:
            x = stage(x)
            out_list.append(x)
        return out_list


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
L
LDOUBLEV 已提交
159
            stride=stride,
W
WenmuZhou 已提交
160
            padding=(kernel_size - 1) // 2,
L
LDOUBLEV 已提交
161
            groups=groups,
W
WenmuZhou 已提交
162
            weight_attr=ParamAttr(name=name + "_weights"),
L
LDOUBLEV 已提交
163 164 165 166 167
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
W
WenmuZhou 已提交
168 169
        self.bn = nn.BatchNorm(
            num_channels=out_channels,
L
LDOUBLEV 已提交
170
            act=act,
W
WenmuZhou 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")

    def __call__(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class ConvBNLayerNew(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayerNew, self).__init__()
        self.pool = nn.AvgPool2d(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)

        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
L
LDOUBLEV 已提交
199
            stride=1,
W
WenmuZhou 已提交
200
            padding=(kernel_size - 1) // 2,
L
LDOUBLEV 已提交
201
            groups=groups,
W
WenmuZhou 已提交
202
            weight_attr=ParamAttr(name=name + "_weights"),
L
LDOUBLEV 已提交
203 204 205 206 207
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
W
WenmuZhou 已提交
208 209
        self.bn = nn.BatchNorm(
            num_channels=out_channels,
L
LDOUBLEV 已提交
210
            act=act,
W
WenmuZhou 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")

    def __call__(self, x):
        x = self.pool(x)
        x = self.conv(x)
        x = self.bn(x)
        return x


class ShortCut(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, name, if_first=False):
        super(ShortCut, self).__init__()
        self.use_conv = True
        if in_channels != out_channels or stride != 1:
L
LDOUBLEV 已提交
228
            if if_first:
W
WenmuZhou 已提交
229 230
                self.conv = ConvBNLayer(
                    in_channels, out_channels, 1, stride, name=name)
L
LDOUBLEV 已提交
231
            else:
W
WenmuZhou 已提交
232 233
                self.conv = ConvBNLayerNew(
                    in_channels, out_channels, 1, stride, name=name)
L
LDOUBLEV 已提交
234
        elif if_first:
W
WenmuZhou 已提交
235 236
            self.conv = ConvBNLayer(
                in_channels, out_channels, 1, stride, name=name)
L
LDOUBLEV 已提交
237
        else:
W
WenmuZhou 已提交
238 239 240 241 242 243
            self.use_conv = False

    def forward(self, x):
        if self.use_conv:
            x = self.conv(x)
        return x
L
LDOUBLEV 已提交
244

W
WenmuZhou 已提交
245 246 247 248 249 250 251 252

class BottleneckBlock(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, name, if_first):
        super(BottleneckBlock, self).__init__()
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
L
LDOUBLEV 已提交
253 254
            act='relu',
            name=name + "_branch2a")
W
WenmuZhou 已提交
255 256 257 258
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
259 260 261
            stride=stride,
            act='relu',
            name=name + "_branch2b")
W
WenmuZhou 已提交
262 263 264 265
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
L
LDOUBLEV 已提交
266 267 268
            act=None,
            name=name + "_branch2c")

W
WenmuZhou 已提交
269 270 271 272
        self.short = ShortCut(
            in_channels=in_channels,
            out_channels=out_channels * 4,
            stride=stride,
L
LDOUBLEV 已提交
273 274
            if_first=if_first,
            name=name + "_branch1")
W
WenmuZhou 已提交
275 276 277 278 279 280 281 282 283
        self.out_channels = out_channels * 4

    def forward(self, x):
        y = self.conv0(x)
        y = self.conv1(y)
        y = self.conv2(y)
        y = y + self.short(x)
        y = F.relu(y)
        return y
L
LDOUBLEV 已提交
284 285


W
WenmuZhou 已提交
286 287 288 289 290 291 292
class BasicBlock(nn.Layer):
    def __init__(self, in_channels, out_channels, stride, name, if_first):
        super(BasicBlock, self).__init__()
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
293 294 295
            act='relu',
            stride=stride,
            name=name + "_branch2a")
W
WenmuZhou 已提交
296 297 298 299
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
L
LDOUBLEV 已提交
300 301
            act=None,
            name=name + "_branch2b")
W
WenmuZhou 已提交
302 303 304 305
        self.short = ShortCut(
            in_channels=in_channels,
            out_channels=out_channels,
            stride=stride,
L
LDOUBLEV 已提交
306 307
            if_first=if_first,
            name=name + "_branch1")
W
WenmuZhou 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        self.out_channels = out_channels

    def forward(self, x):
        y = self.conv0(x)
        y = self.conv1(y)
        y = y + self.short(x)
        return F.relu(y)


if __name__ == '__main__':
    import paddle

    paddle.disable_static()
    x = paddle.zeros([1, 3, 640, 640])
    x = paddle.to_variable(x)
    print(x.shape)
    net = ResNet(layers=18)
    y = net(x)

    for stage in y:
        print(stage.shape)
    # paddle.save(net.state_dict(),'1.pth')