README.md 10.8 KB
Newer Older
D
dyning 已提交
1
## 简介
T
tink2123 已提交
2 3
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

D
dyning 已提交
4 5 6
**近期更新**
- 2020.5.30,模型预测、训练支持Windows系统,识别结果的显示进行了优化
- 2020.5.30,开源通用中文OCR模型
D
dyning 已提交
7
- 2020.5.30,提供超轻量级中文OCR在线体验
D
dyning 已提交
8

D
dyning 已提交
9
## 特性
D
dyning 已提交
10 11 12
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
D
dyning 已提交
13 14 15
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

D
dyning 已提交
16 17 18 19 20 21
### 支持的中文模型列表:

|模型名称|模型简介|检测模型地址|识别模型地址|
|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
L
LDOUBLEV 已提交
22

D
dyning 已提交
23
超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
L
LDOUBLEV 已提交
24

D
dyning 已提交
25
**也可以按如下教程快速体验超轻量级中文OCR和通用中文OCR模型。**
L
LDOUBLEV 已提交
26

D
dyning 已提交
27
## **超轻量级中文OCR以及通用中文OCR体验**
T
tink2123 已提交
28

L
LDOUBLEV 已提交
29
![](doc/imgs_results/11.jpg)
L
LDOUBLEV 已提交
30

D
dyning 已提交
31
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)
D
dyning 已提交
32

D
dyning 已提交
33
#### 1.环境配置
L
LDOUBLEV 已提交
34

D
dyning 已提交
35
请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
T
tink2123 已提交
36

D
dyning 已提交
37
#### 2.inference模型下载
L
LDOUBLEV 已提交
38

T
tink2123 已提交
39 40
*windows 环境下没有如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*

D
dyning 已提交
41
#### (1)超轻量级中文OCR模型下载
T
tink2123 已提交
42
```
L
LDOUBLEV 已提交
43
mkdir inference && cd inference
D
dyning 已提交
44
# 下载超轻量级中文OCR模型的检测模型并解压
L
LDOUBLEV 已提交
45
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
D
dyning 已提交
46
# 下载超轻量级中文OCR模型的识别模型并解压
L
LDOUBLEV 已提交
47
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
D
dyning 已提交
48 49 50 51 52 53 54 55 56 57
cd ..
```
#### (2)通用中文OCR模型下载
```
mkdir inference && cd inference
# 下载通用中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
# 下载通用中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
cd ..
T
tink2123 已提交
58 59
```

D
dyning 已提交
60 61
#### 3.单张图像或者图像集合预测

D
dyning 已提交
62
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
D
dyning 已提交
63

T
tink2123 已提交
64
```
D
dyning 已提交
65
# 设置PYTHONPATH环境变量
T
tink2123 已提交
66 67
export PYTHONPATH=.

T
tink2123 已提交
68 69 70
# windows下设置环境变量
SET PYTHONPATH=.

D
dyning 已提交
71
# 预测image_dir指定的单张图像
D
dyning 已提交
72
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
D
dyning 已提交
73 74

# 预测image_dir指定的图像集合
D
dyning 已提交
75
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
D
dyning 已提交
76

L
LDOUBLEV 已提交
77
# 如果想使用CPU进行预测,需设置use_gpu参数为False
D
dyning 已提交
78 79 80 81 82 83 84
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
T
tink2123 已提交
85
```
L
LDOUBLEV 已提交
86

D
dyning 已提交
87
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/inference.md)
T
tink2123 已提交
88

D
dyning 已提交
89 90
## 文档教程
- [快速安装](./doc/installation.md)
D
dyning 已提交
91 92 93
- [文本检测模型训练/评估/预测](./doc/detection.md)
- [文本识别模型训练/评估/预测](./doc/recognition.md)
- [基于预测引擎推理](./doc/inference.md)
D
dyning 已提交
94

D
dyning 已提交
95
## 文本检测算法
T
tink2123 已提交
96 97

PaddleOCR开源的文本检测算法列表:
T
tink2123 已提交
98
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
T
fix url  
tink2123 已提交
99 100
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
T
tink2123 已提交
101

D
dyning 已提交
102
在ICDAR2015文本检测公开数据集上,算法效果如下:
T
tink2123 已提交
103

L
fix doc  
LDOUBLEV 已提交
104
|模型|骨干网络|precision|recall|Hmean|下载链接|
105
|-|-|-|-|-|-|
D
dyning 已提交
106
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
L
fix doc  
LDOUBLEV 已提交
107 108 109
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
L
LDOUBLEV 已提交
110

111
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
T
tink2123 已提交
112

D
dyning 已提交
113
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)
T
tink2123 已提交
114

D
dyning 已提交
115
## 文本识别算法
T
tink2123 已提交
116 117

PaddleOCR开源的文本识别算法列表:
T
tink2123 已提交
118 119 120 121 122
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
T
tink2123 已提交
123

D
dyning 已提交
124
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
T
tink2123 已提交
125

D
dyning 已提交
126
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
D
dyning 已提交
127
|-|-|-|-|-|
D
dyning 已提交
128 129 130 131 132 133 134 135
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
T
tink2123 已提交
136

D
dyning 已提交
137
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)
T
tink2123 已提交
138

D
dyning 已提交
139 140
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
T
tink2123 已提交
141

D
dyning 已提交
142
<a name="效果展示"></a>
D
dyning 已提交
143
## 超轻量级中文OCR效果展示
L
LDOUBLEV 已提交
144 145 146 147 148 149 150 151
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
T
tink2123 已提交
152

153 154 155 156 157
## 通用中文OCR效果展示
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

D
dyning 已提交
158 159 160 161
## 更新
- 2020.5.30,模型预测、训练支持Windows系统,识别结果的显示进行了优化
- 2020.5.30,开源通用中文OCR模型
- 2020.5.30,提供超轻量级中文OCR在线体验
T
tink2123 已提交
162

D
dyning 已提交
163
## 参考文献
T
tink2123 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
D
dyning 已提交
217 218 219 220 221 222

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

## 如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。