README.md 7.0 KB
Newer Older
T
tink2123 已提交
1

D
dyning 已提交
2
## 简介
T
tink2123 已提交
3 4
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

D
dyning 已提交
5
## 特性
D
dyning 已提交
6 7 8
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
D
dyning 已提交
9 10 11 12
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

## **超轻量级中文OCR体验**
T
tink2123 已提交
13

L
LDOUBLEV 已提交
14
![](./doc/imgs_draw/11.jpg)
L
LDOUBLEV 已提交
15

D
dyning 已提交
16
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)
D
dyning 已提交
17 18

#### 1.运行环境配置
L
LDOUBLEV 已提交
19

D
dyning 已提交
20
前请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
T
tink2123 已提交
21

D
dyning 已提交
22
#### 2.模型下载
L
LDOUBLEV 已提交
23

T
tink2123 已提交
24
```
D
dyning 已提交
25
# 创建模型保存目录
T
tink2123 已提交
26
mkdir inference && cd inference && mkdir det && mkdir rec
D
dyning 已提交
27
# 下载inference模型文件包
T
tink2123 已提交
28
wget -P ./inference https://paddleocr.bj.bcebos.com/inference.tar
D
dyning 已提交
29 30
# inference模型文件包解压
tar -xf ./inference/inference.tar
T
tink2123 已提交
31 32
```

D
dyning 已提交
33 34 35 36
#### 3.单张图像或者图像集合预测

实现文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。

T
tink2123 已提交
37
```
D
dyning 已提交
38
# 设置PYTHONPATH环境变量
T
tink2123 已提交
39 40
export PYTHONPATH=.

D
dyning 已提交
41 42 43 44 45
# 预测image_dir指定的单张图像
python tools/infer/predict_system.py --image_dir="/Demo.jpg" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"

# 预测image_dir指定的图像集合
python tools/infer/predict_system.py --image_dir="/test_imgs/" --det_model_dir="./inference/det/"  --rec_model_dir="./inference/rec/"
T
tink2123 已提交
46
```
D
dyning 已提交
47
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于推理引擎预测](./doc/inference.md)
T
tink2123 已提交
48

D
dyning 已提交
49 50
## 文档教程
- [快速安装](./doc/installation.md)
D
dyning 已提交
51 52 53
- [文本检测模型训练/评估/预测](./doc/detection.md)
- [文本识别模型训练/评估/预测](./doc/recognition.md)
- [基于推理引擎预测](./doc/inference.md)
D
dyning 已提交
54

D
dyning 已提交
55
## 文本检测算法
T
tink2123 已提交
56 57 58 59

PaddleOCR开源的文本检测算法列表:
- [x]  [EAST](https://arxiv.org/abs/1704.03155)
- [x]  [DB](https://arxiv.org/abs/1911.08947)
D
dyning 已提交
60
- [ ]  [SAST](https://arxiv.org/abs/1908.05498)(百度自研, comming soon)
T
tink2123 已提交
61

D
dyning 已提交
62
在ICDAR2015文本检测公开数据集上,算法效果如下:
T
tink2123 已提交
63 64 65

|模型|骨干网络|Hmean|
|-|-|-|
T
tink2123 已提交
66 67 68 69
|[EAST](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|ResNet50_vd|85.85%|
|[EAST](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|MobileNetV3|79.08%|
|[DB](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|ResNet50_vd|83.30%|
|[DB](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|MobileNetV3|73.00%|
T
tink2123 已提交
70

D
dyning 已提交
71
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)
T
tink2123 已提交
72

D
dyning 已提交
73
## 文本识别算法
T
tink2123 已提交
74 75 76

PaddleOCR开源的文本识别算法列表:
- [x]  [CRNN](https://arxiv.org/abs/1507.05717)
D
dyning 已提交
77 78 79 80
- [x]  [Rosetta](https://arxiv.org/abs/1910.05085)
- [x]  [STAR-Net](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)
- [x]  [RARE](https://arxiv.org/abs/1603.03915v1)
- [ ]  [SRN]((https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
T
tink2123 已提交
81

D
dyning 已提交
82
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别合成数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行效果评估,算法效果如下:
T
tink2123 已提交
83 84 85

|模型|骨干网络|ACC|
|-|-|-|
T
tink2123 已提交
86 87 88 89 90 91 92 93
|[Rosetta](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|Resnet34_vd|80.24%|
|[Rosetta](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|MobileNetV3|78.16%|
|[CRNN](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|Resnet34_vd|82.20%|
|[CRNN](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|MobileNetV3|79.37%|
|[STAR-Net](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|Resnet34_vd|83.93%|
|[STAR-Net](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|MobileNetV3|81.56%|
|[RARE](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|Resnet34_vd|84.90%|
|[RARE](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|MobileNetV3|83.32%|
T
tink2123 已提交
94

D
dyning 已提交
95
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)
T
tink2123 已提交
96

D
dyning 已提交
97 98
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
T
tink2123 已提交
99

D
dyning 已提交
100
<a name="效果展示"></a>
L
LDOUBLEV 已提交
101
## 效果展示
D
dyning 已提交
102 103 104 105 106 107 108 109
![](./doc/imgs_draw/1.jpg)
![](./doc/imgs_draw/4.jpg)
![](./doc/imgs_draw/6.jpg)
![](./doc/imgs_draw/7.jpg)
![](./doc/imgs_draw/9.jpg)
![](./doc/imgs_draw/12.jpg)
![](./doc/imgs_draw/16.jpg)
![](./doc/imgs_draw/22.jpg)
T
tink2123 已提交
110 111


D
dyning 已提交
112
## 参考文献
T
tink2123 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
D
dyning 已提交
166 167 168 169 170 171 172 173

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

## 版本更新

## 如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。