dataset_traversal.py 12.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28
logger = initial_logger()

T
tink2123 已提交
29
from .img_tools import process_image, process_image_srn, get_img_data
L
LDOUBLEV 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
T
tink2123 已提交
43
        self.num_heads = params['num_heads']
L
LDOUBLEV 已提交
44
        self.mode = params['mode']
T
tink2123 已提交
45
        self.drop_last = False
T
tink2123 已提交
46
        self.use_tps = False
T
tink2123 已提交
47
        if "tps" in params:
T
tink2123 已提交
48
            self.ues_tps = True
T
tink2123 已提交
49
        self.use_distort = False
T
tink2123 已提交
50
        if "distort" in params:
T
tink2123 已提交
51 52 53 54 55
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU. Distort will be set to False."
                )
L
LDOUBLEV 已提交
56 57
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
58
            self.drop_last = True
T
tink2123 已提交
59
        else:
L
LDOUBLEV 已提交
60
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
61
            self.drop_last = False
62
            self.use_distort = False
T
tink2123 已提交
63 64
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
117
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
118 119 120
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
                    if img.shape[-1]==1 or len(list(img.shape))==2:
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
                    if self.loss_type == 'srn':
                        norm_img = process_image_srn(
                            img=img,
                            image_shape=self.image_shape,
                            num_heads=self.num_heads,
                            max_text_length=self.max_text_length
                        )
                    else:
                        norm_img = process_image(
                            img=img,
                            image_shape=self.image_shape,
                            char_ops=self.char_ops,
                            tps=self.use_tps,
                            infer_mode=True)
                    yield norm_img
            elif self.mode == 'test':
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
                    if img.shape[-1]==1 or len(list(img.shape))==2:
T
tink2123 已提交
143
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
144 145 146
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
147
                        char_ops=self.char_ops,
T
tink2123 已提交
148
                        tps=self.use_tps,
T
tink2123 已提交
149 150
                        infer_mode=True
                    )
T
tink2123 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
T
tink2123 已提交
170 171 172 173 174 175 176 177 178 179
                            outs = []
                            if self.loss_type == "srn":
                                outs = process_image_srn(img, self.image_shape, self.num_heads,
                                                         self.max_text_length, label,
                                                         self.char_ops, self.loss_type)

                            else:
                                outs = process_image(img, self.image_shape, label,
                                                    self.char_ops, self.loss_type,
                                                    self.max_text_length)
T
tink2123 已提交
180 181 182 183 184 185 186
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
L
LDOUBLEV 已提交
187 188 189 190 191 192 193
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
194 195
            if len(batch_outs) != 0:
                yield batch_outs
L
LDOUBLEV 已提交
196

T
tink2123 已提交
197
        if self.infer_img is None:
T
tink2123 已提交
198 199
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
200 201 202 203 204 205 206 207


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
208 209 210
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
T
tink2123 已提交
211
        self.use_gpu = params['use_gpu']
L
LDOUBLEV 已提交
212 213 214 215 216
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
217
        self.infer_img = params['infer_img']
T
tink2123 已提交
218
        self.use_tps = False
T
tink2123 已提交
219
        if "tps" in params:
T
tink2123 已提交
220
            self.use_tps = True
T
tink2123 已提交
221
        self.use_distort = False
T
tink2123 已提交
222
        if "distort" in params:
T
tink2123 已提交
223 224 225 226 227
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
L
LDOUBLEV 已提交
228 229
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
230
            self.drop_last = True
L
LDOUBLEV 已提交
231
        else:
T
tink2123 已提交
232
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
233
            self.drop_last = False
234
            self.use_distort = False
L
LDOUBLEV 已提交
235 236 237 238 239

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

T
tink2123 已提交
240 241 242 243 244 245 246 247 248
        def get_device_num():
            if self.use_gpu:
                gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1)
                gpu_num = len(gpus.split(','))
                return gpu_num
            else:
                cpu_num = os.environ.get("CPU_NUM", 1)
                return int(cpu_num)

L
LDOUBLEV 已提交
249
        def sample_iter_reader():
T
tink2123 已提交
250
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
251
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
252 253
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
254
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
255
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
256 257 258
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
259
                        char_ops=self.char_ops,
T
tink2123 已提交
260
                        tps=self.use_tps,
T
tink2123 已提交
261
                        infer_mode=True)
T
tink2123 已提交
262
                    yield norm_img
T
tink2123 已提交
263 264 265 266 267 268
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
littletomatodonkey's avatar
littletomatodonkey 已提交
269
                if sys.platform == "win32" and self.num_workers != 1:
T
tink2123 已提交
270 271 272
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
T
tink2123 已提交
273
                if self.batch_size * get_device_num() > img_num:
T
tink2123 已提交
274
                    raise Exception(
T
tink2123 已提交
275 276
                        "The number of the whole data ({}) is smaller than the batch_size * devices_num ({})".
                        format(img_num, self.batch_size * get_device_num()))
T
tink2123 已提交
277 278 279 280 281 282 283 284
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
285
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
286 287
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
288
                    label = substr[1]
T
tink2123 已提交
289 290 291 292 293 294 295 296
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
T
tink2123 已提交
297 298 299
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
300 301 302 303 304 305 306 307

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
308 309 310
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
311

T
tink2123 已提交
312
        if self.infer_img is None:
T
tink2123 已提交
313
            return batch_iter_reader
T
tink2123 已提交
314
        return sample_iter_reader