dataset_traversal.py 7.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
        else:
            self.batch_size = params['test_batch_size_per_card']

    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
            lmdb_sets = self.load_hierarchical_lmdb_dataset()
            if process_id == 0:
                self.print_lmdb_sets_info(lmdb_sets)
            cur_index_sets = [1 + process_id] * len(lmdb_sets)
            while True:
                finish_read_num = 0
                for dataset_idx in range(len(lmdb_sets)):
                    cur_index = cur_index_sets[dataset_idx]
                    if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                        finish_read_num += 1
                    else:
                        sample_info = self.get_lmdb_sample_info(
                            lmdb_sets[dataset_idx]['txn'], cur_index)
                        cur_index_sets[dataset_idx] += self.num_workers
                        if sample_info is None:
                            continue
                        img, label = sample_info
                        outs = process_image(img, self.image_shape, label,
                                             self.char_ops, self.loss_type,
                                             self.max_text_length)
                        if outs is None:
                            continue
                        yield outs

                if finish_read_num == len(lmdb_sets):
                    break
            self.close_lmdb_dataset(lmdb_sets)

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

        return batch_iter_reader


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.img_set_dir = params['img_set_dir']
        self.label_file_path = params['label_file_path']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
        elif params['mode'] == 'eval':
            self.batch_size = params['test_batch_size_per_card']
        else:
            self.batch_size = 1
            self.infer_img = params['infer_img']

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
            if self.mode == 'test':
                print("infer_img:", self.infer_img)
                img = cv2.imread(self.infer_img)
                norm_img = process_image(img, self.image_shape)
                yield norm_img
            with open(self.label_file_path, "rb") as fin:
                label_infor_list = fin.readlines()
            img_num = len(label_infor_list)
            img_id_list = list(range(img_num))
            random.shuffle(img_id_list)
            for img_id in range(process_id, img_num, self.num_workers):
                label_infor = label_infor_list[img_id_list[img_id]]
                substr = label_infor.decode('utf-8').strip("\n").split("\t")
                img_path = self.img_set_dir + "/" + substr[0]
                img = cv2.imread(img_path)
                if img is None:
                    continue
                label = substr[1]
                outs = process_image(img, self.image_shape, label,
                                     self.char_ops, self.loss_type,
                                     self.max_text_length)
                if outs is None:
                    continue
                yield outs

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

        return batch_iter_reader