bininfo.go 51.7 KB
Newer Older
1 2 3
package proc

import (
4
	"bytes"
5 6 7
	"debug/dwarf"
	"debug/elf"
	"debug/macho"
8
	"debug/pe"
9
	"encoding/binary"
10
	"encoding/hex"
11 12
	"errors"
	"fmt"
13 14
	"go/ast"
	"go/token"
15 16
	"io"
	"os"
17
	"path/filepath"
18
	"sort"
19
	"strconv"
20
	"strings"
21 22 23
	"sync"
	"time"

24 25 26
	"github.com/go-delve/delve/pkg/dwarf/frame"
	"github.com/go-delve/delve/pkg/dwarf/godwarf"
	"github.com/go-delve/delve/pkg/dwarf/line"
27
	"github.com/go-delve/delve/pkg/dwarf/loclist"
28 29 30
	"github.com/go-delve/delve/pkg/dwarf/op"
	"github.com/go-delve/delve/pkg/dwarf/reader"
	"github.com/go-delve/delve/pkg/goversion"
31 32
	"github.com/go-delve/delve/pkg/logflags"
	"github.com/sirupsen/logrus"
33 34
)

35 36
// BinaryInfo holds information on the binaries being executed (this
// includes both the executable and also any loaded libraries).
37
type BinaryInfo struct {
D
Derek Parker 已提交
38 39 40 41 42 43
	// Architecture of this binary.
	Arch Arch

	// GOOS operating system this binary is executing on.
	GOOS string

44 45
	debugInfoDirectories []string

D
Derek Parker 已提交
46 47 48 49 50 51 52
	// Functions is a list of all DW_TAG_subprogram entries in debug_info, sorted by entry point
	Functions []Function
	// Sources is a list of all source files found in debug_line.
	Sources []string
	// LookupFunc maps function names to a description of the function.
	LookupFunc map[string]*Function

53
	// Images is a list of loaded shared libraries (also known as
J
Justin Clift 已提交
54
	// shared objects on linux or DLLs on windows).
55 56 57 58
	Images []*Image

	ElfDynamicSection ElfDynamicSection

59 60
	lastModified time.Time // Time the executable of this process was last modified

61 62
	closer         io.Closer
	sepDebugCloser io.Closer
63

64 65 66 67 68 69 70 71 72 73
	// PackageMap maps package names to package paths, needed to lookup types inside DWARF info.
	// On Go1.12 this mapping is determined by using the last element of a package path, for example:
	//   github.com/go-delve/delve
	// will map to 'delve' because it ends in '/delve'.
	// Starting with Go1.13 debug_info will contain a special attribute
	// (godwarf.AttrGoPackageName) containing the canonical package name for
	// each package.
	// If multiple packages have the same name the map entry will have more
	// than one item in the slice.
	PackageMap map[string][]string
74

D
Derek Parker 已提交
75
	frameEntries frame.FrameDescriptionEntries
76 77 78 79 80

	compileUnits []*compileUnit // compileUnits is sorted by increasing DWARF offset

	types       map[string]dwarfRef
	packageVars []packageVar // packageVars is a list of all global/package variables in debug_info, sorted by address
81

D
Derek Parker 已提交
82
	gStructOffset uint64
83

84 85 86 87
	// nameOfRuntimeType maps an address of a runtime._type struct to its
	// decoded name. Used with versions of Go <= 1.10 to figure out the DIE of
	// the concrete type of interfaces.
	nameOfRuntimeType map[uintptr]nameOfRuntimeTypeEntry
88

89 90
	// consts[off] lists all the constants with the type defined at offset off.
	consts constantsMap
91

92 93 94 95 96
	// inlinedCallLines maps a file:line pair, corresponding to the header line
	// of a function to a list of PC addresses where an inlined call to that
	// function starts.
	inlinedCallLines map[fileLine][]uint64

97
	logger *logrus.Entry
98 99
}

100 101 102 103 104 105 106 107
// ErrUnsupportedLinuxArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedLinuxArch = errors.New("unsupported architecture - only linux/amd64 is supported")

// ErrUnsupportedWindowsArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedWindowsArch = errors.New("unsupported architecture of windows/386 - only windows/amd64 is supported")

// ErrUnsupportedDarwinArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedDarwinArch = errors.New("unsupported architecture - only darwin/amd64 is supported")
108

109 110
// ErrCouldNotDetermineRelocation is an error returned when Delve could not determine the base address of a
// position independant executable.
111 112
var ErrCouldNotDetermineRelocation = errors.New("could not determine the base address of a PIE")

113 114 115
// ErrNoDebugInfoFound is returned when Delve cannot open the debug_info
// section or find an external debug info file.
var ErrNoDebugInfoFound = errors.New("could not open debug info")
116

117 118 119
const dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231)

type compileUnit struct {
120 121 122
	name   string // univocal name for non-go compile units
	lowPC  uint64
	ranges [][2]uint64
123

124 125 126 127 128
	entry     *dwarf.Entry        // debug_info entry describing this compile unit
	isgo      bool                // true if this is the go compile unit
	lineInfo  *line.DebugLineInfo // debug_line segment associated with this compile unit
	optimized bool                // this compile unit is optimized
	producer  string              // producer attribute
129

130
	offset dwarf.Offset // offset of the entry describing the compile unit
131 132 133 134

	image *Image // parent image of this compilation unit.
}

135 136 137 138 139
type fileLine struct {
	file string
	line int
}

140 141 142 143
// dwarfRef is a reference to a Debug Info Entry inside a shared object.
type dwarfRef struct {
	imageIndex int
	offset     dwarf.Offset
144 145
}

146 147 148 149
// InlinedCall represents a concrete inlined call to a function.
type InlinedCall struct {
	cu            *compileUnit
	LowPC, HighPC uint64 // Address range of the generated inlined instructions
150 151
}

152 153 154 155 156 157
// Function describes a function in the target program.
type Function struct {
	Name       string
	Entry, End uint64 // same as DW_AT_lowpc and DW_AT_highpc
	offset     dwarf.Offset
	cu         *compileUnit
158 159 160

	// InlinedCalls lists all inlined calls to this function
	InlinedCalls []InlinedCall
161 162 163 164 165 166
}

// PackageName returns the package part of the symbol name,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) PackageName() string {
167 168 169 170 171
	return packageName(fn.Name)
}

func packageName(name string) string {
	pathend := strings.LastIndex(name, "/")
172 173 174 175
	if pathend < 0 {
		pathend = 0
	}

176 177
	if i := strings.Index(name[pathend:], "."); i != -1 {
		return name[:pathend+i]
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	}
	return ""
}

// ReceiverName returns the receiver type name of this symbol,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) ReceiverName() string {
	pathend := strings.LastIndex(fn.Name, "/")
	if pathend < 0 {
		pathend = 0
	}
	l := strings.Index(fn.Name[pathend:], ".")
	r := strings.LastIndex(fn.Name[pathend:], ".")
	if l == -1 || r == -1 || l == r {
		return ""
	}
	return fn.Name[pathend+l+1 : pathend+r]
}

// BaseName returns the symbol name without the package or receiver name.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) BaseName() string {
	if i := strings.LastIndex(fn.Name, "."); i != -1 {
		return fn.Name[i+1:]
	}
	return fn.Name
}

207 208 209 210 211
// Optimized returns true if the function was optimized by the compiler.
func (fn *Function) Optimized() bool {
	return fn.cu.optimized
}

212 213 214 215 216 217 218 219 220
// PrologueEndPC returns the PC just after the function prologue
func (fn *Function) PrologueEndPC() uint64 {
	pc, _, _, ok := fn.cu.lineInfo.PrologueEndPC(fn.Entry, fn.End)
	if !ok {
		return fn.Entry
	}
	return pc
}

221
type constantsMap map[dwarfRef]*constantType
222 223 224 225 226 227 228 229 230 231 232 233 234

type constantType struct {
	initialized bool
	values      []constantValue
}

type constantValue struct {
	name      string
	fullName  string
	value     int64
	singleBit bool
}

235 236 237 238 239
// packageVar represents a package-level variable (or a C global variable).
// If a global variable does not have an address (for example it's stored in
// a register, or non-contiguously) addr will be 0.
type packageVar struct {
	name   string
240
	cu     *compileUnit
241 242 243 244
	offset dwarf.Offset
	addr   uint64
}

245
type buildIDHeader struct {
246 247 248 249 250
	Namesz uint32
	Descsz uint32
	Type   uint32
}

251 252 253 254 255 256
// ElfDynamicSection describes the .dynamic section of an ELF executable.
type ElfDynamicSection struct {
	Addr uint64 // relocated address of where the .dynamic section is mapped in memory
	Size uint64 // size of the .dynamic section of the executable
}

257 258
// NewBinaryInfo returns an initialized but unloaded BinaryInfo struct.
func NewBinaryInfo(goos, goarch string) *BinaryInfo {
259
	r := &BinaryInfo{GOOS: goos, nameOfRuntimeType: make(map[uintptr]nameOfRuntimeTypeEntry), logger: logflags.DebuggerLogger()}
260

261
	// TODO: find better way to determine proc arch (perhaps use executable file info).
262 263
	switch goarch {
	case "amd64":
264
		r.Arch = AMD64Arch(goos)
265 266 267 268 269
	}

	return r
}

270
// LoadBinaryInfo will load and store the information from the binary at 'path'.
271
func (bi *BinaryInfo) LoadBinaryInfo(path string, entryPoint uint64, debugInfoDirs []string) error {
272 273
	fi, err := os.Stat(path)
	if err == nil {
274
		bi.lastModified = fi.ModTime()
275 276
	}

277 278 279 280 281 282
	bi.debugInfoDirectories = debugInfoDirs

	return bi.AddImage(path, entryPoint)
}

func loadBinaryInfo(bi *BinaryInfo, image *Image, path string, entryPoint uint64) error {
283 284
	var wg sync.WaitGroup
	defer wg.Wait()
285

286
	switch bi.GOOS {
287
	case "linux", "freebsd":
288
		return loadBinaryInfoElf(bi, image, path, entryPoint, &wg)
289
	case "windows":
290
		return loadBinaryInfoPE(bi, image, path, entryPoint, &wg)
291
	case "darwin":
292
		return loadBinaryInfoMacho(bi, image, path, entryPoint, &wg)
293 294 295 296
	}
	return errors.New("unsupported operating system")
}

297 298 299 300 301 302
// GStructOffset returns the offset of the G
// struct in thread local storage.
func (bi *BinaryInfo) GStructOffset() uint64 {
	return bi.gStructOffset
}

303
// LastModified returns the last modified time of the binary.
304 305 306 307 308
func (bi *BinaryInfo) LastModified() time.Time {
	return bi.lastModified
}

// DwarfReader returns a reader for the dwarf data
309 310
func (so *Image) DwarfReader() *reader.Reader {
	return reader.New(so.dwarf)
311 312 313 314 315 316 317 318 319 320 321 322
}

// Types returns list of types present in the debugged program.
func (bi *BinaryInfo) Types() ([]string, error) {
	types := make([]string, 0, len(bi.types))
	for k := range bi.types {
		types = append(types, k)
	}
	return types, nil
}

// PCToLine converts an instruction address to a file/line/function.
323 324 325 326 327
func (bi *BinaryInfo) PCToLine(pc uint64) (string, int, *Function) {
	fn := bi.PCToFunc(pc)
	if fn == nil {
		return "", 0, nil
	}
A
aarzilli 已提交
328
	f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc)
329
	return f, ln, fn
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344
type ErrCouldNotFindLine struct {
	fileFound bool
	filename  string
	lineno    int
}

func (err *ErrCouldNotFindLine) Error() string {
	if err.fileFound {
		return fmt.Sprintf("could not find statement at %s:%d, please use a line with a statement", err.filename, err.lineno)
	}
	return fmt.Sprintf("could not find file %s", err.filename)
}

345 346 347 348
// LineToPC converts a file:line into a list of matching memory addresses,
// corresponding to the first instruction matching the specified file:line
// in the containing function and all its inlined calls.
func (bi *BinaryInfo) LineToPC(filename string, lineno int) (pcs []uint64, err error) {
349
	fileFound := false
350
	var pc uint64
351
	for _, cu := range bi.compileUnits {
352 353 354 355 356 357 358
		if cu.lineInfo.Lookup[filename] == nil {
			continue
		}
		fileFound = true
		pc = cu.lineInfo.LineToPC(filename, lineno)
		if pc != 0 {
			break
359 360
		}
	}
361

362 363 364 365 366 367 368
	if pc == 0 {
		// Check if the line contained a call to a function that was inlined, in
		// that case it's possible for the line itself to not appear in debug_line
		// at all, but it will still be in debug_info as the call site for an
		// inlined subroutine entry.
		if pcs := bi.inlinedCallLines[fileLine{filename, lineno}]; len(pcs) != 0 {
			return pcs, nil
A
aarzilli 已提交
369
		}
370 371 372 373 374 375 376 377 378 379 380 381 382 383
		return nil, &ErrCouldNotFindLine{fileFound, filename, lineno}
	}
	// The code above will find the first occurence of an instruction
	// corresponding to filename:line. If the function corresponding to that
	// instruction has been inlined we don't just want to return the first
	// occurence (which could be either the concrete version of the function or
	// one of the inlinings) but instead:
	// - the first instruction corresponding to filename:line in the concrete
	//   version of the function
	// - the first instruction corresponding to filename:line in each inlined
	//   instance of the function.
	fn := bi.PCToInlineFunc(pc)
	if fn == nil {
		return []uint64{pc}, nil
A
aarzilli 已提交
384
	}
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	pcs = make([]uint64, 0, len(fn.InlinedCalls)+1)
	pcs = appendLineToPCIn(pcs, filename, lineno, fn.cu, fn, fn.Entry, fn.End)
	for _, call := range fn.InlinedCalls {
		pcs = appendLineToPCIn(pcs, filename, lineno, call.cu, bi.PCToFunc(call.LowPC), call.LowPC, call.HighPC)
	}
	return pcs, nil
}

func appendLineToPCIn(pcs []uint64, filename string, lineno int, cu *compileUnit, containingFn *Function, lowPC, highPC uint64) []uint64 {
	var entry uint64
	if containingFn != nil {
		entry = containingFn.Entry
	}
	pc := cu.lineInfo.LineToPCIn(filename, lineno, entry, lowPC, highPC)
	if pc != 0 {
		return append(pcs, pc)
	}
	return pcs
A
aarzilli 已提交
403 404
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418
// AllPCsForFileLines returns a map providing all PC addresses for filename and each line in linenos
func (bi *BinaryInfo) AllPCsForFileLines(filename string, linenos []int) map[int][]uint64 {
	r := make(map[int][]uint64)
	for _, line := range linenos {
		r[line] = make([]uint64, 0, 1)
	}
	for _, cu := range bi.compileUnits {
		if cu.lineInfo.Lookup[filename] != nil {
			cu.lineInfo.AllPCsForFileLines(filename, r)
		}
	}
	return r
}

419 420
// PCToFunc returns the concrete function containing the given PC address.
// If the PC address belongs to an inlined call it will return the containing function.
421 422 423 424 425 426 427 428 429 430 431 432
func (bi *BinaryInfo) PCToFunc(pc uint64) *Function {
	i := sort.Search(len(bi.Functions), func(i int) bool {
		fn := bi.Functions[i]
		return pc <= fn.Entry || (fn.Entry <= pc && pc < fn.End)
	})
	if i != len(bi.Functions) {
		fn := &bi.Functions[i]
		if fn.Entry <= pc && pc < fn.End {
			return fn
		}
	}
	return nil
433 434
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
// PCToInlineFunc returns the function containing the given PC address.
// If the PC address belongs to an inlined call it will return the inlined function.
func (bi *BinaryInfo) PCToInlineFunc(pc uint64) *Function {
	fn := bi.PCToFunc(pc)
	irdr := reader.InlineStack(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(pc, fn.cu.image.StaticBase))
	var inlineFnEntry *dwarf.Entry
	for irdr.Next() {
		inlineFnEntry = irdr.Entry()
	}

	if inlineFnEntry == nil {
		return fn
	}

	e, _ := reader.LoadAbstractOrigin(inlineFnEntry, fn.cu.image.dwarfReader)
	fnname, okname := e.Val(dwarf.AttrName).(string)
	if !okname {
		return fn
	}

	return bi.LookupFunc[fnname]
}

458 459
// PCToImage returns the image containing the given PC address.
func (bi *BinaryInfo) PCToImage(pc uint64) *Image {
460 461 462 463
	fn := bi.PCToFunc(pc)
	return bi.funcToImage(fn)
}

464 465
// Image represents a loaded library file (shared object on linux, DLL on windows).
type Image struct {
466 467 468 469 470 471 472 473 474 475 476
	Path       string
	StaticBase uint64
	addr       uint64

	index int // index of this object in BinaryInfo.SharedObjects

	closer         io.Closer
	sepDebugCloser io.Closer

	dwarf       *dwarf.Data
	dwarfReader *dwarf.Reader
477
	loclist     *loclist.Reader
478 479 480 481 482 483 484 485 486 487 488

	typeCache map[dwarf.Offset]godwarf.Type

	// runtimeTypeToDIE maps between the offset of a runtime._type in
	// runtime.moduledata.types and the offset of the DIE in debug_info. This
	// map is filled by using the extended attribute godwarf.AttrGoRuntimeType
	// which was added in go 1.11.
	runtimeTypeToDIE map[uint64]runtimeTypeDIE

	loadErrMu sync.Mutex
	loadErr   error
489 490
}

491 492 493 494 495 496 497 498
func (image *Image) registerRuntimeTypeToDIE(entry *dwarf.Entry, ardr *reader.Reader) {
	if off, ok := entry.Val(godwarf.AttrGoRuntimeType).(uint64); ok {
		if _, ok := image.runtimeTypeToDIE[off]; !ok {
			image.runtimeTypeToDIE[off+image.StaticBase] = runtimeTypeDIE{entry.Offset, -1}
		}
	}
}

499 500 501 502 503 504 505 506
// AddImage adds the specified image to bi, loading data asynchronously.
// Addr is the relocated entry point for the executable and staticBase (i.e.
// the relocation offset) for all other images.
// The first image added must be the executable file.
func (bi *BinaryInfo) AddImage(path string, addr uint64) error {
	// Check if the image is already present.
	if len(bi.Images) > 0 && !strings.HasPrefix(path, "/") {
		return nil
507 508 509
	}
	for _, image := range bi.Images {
		if image.Path == path && image.addr == addr {
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			return nil
		}
	}

	// Actually add the image.
	image := &Image{Path: path, addr: addr, typeCache: make(map[dwarf.Offset]godwarf.Type)}
	// add Image regardless of error so that we don't attempt to re-add it every time we stop
	image.index = len(bi.Images)
	bi.Images = append(bi.Images, image)
	err := loadBinaryInfo(bi, image, path, addr)
	if err != nil {
		bi.Images[len(bi.Images)-1].loadErr = err
	}
	return err
}

// moduleDataToImage finds the image corresponding to the given module data object.
func (bi *BinaryInfo) moduleDataToImage(md *moduleData) *Image {
	return bi.funcToImage(bi.PCToFunc(uint64(md.text)))
}

// imageToModuleData finds the module data in mds corresponding to the given image.
func (bi *BinaryInfo) imageToModuleData(image *Image, mds []moduleData) *moduleData {
	for _, md := range mds {
		im2 := bi.moduleDataToImage(&md)
		if im2.index == image.index {
			return &md
537 538
		}
	}
539
	return nil
540 541
}

542 543 544 545 546 547 548
// typeToImage returns the image containing the give type.
func (bi *BinaryInfo) typeToImage(typ godwarf.Type) *Image {
	return bi.Images[typ.Common().Index]
}

var errBinaryInfoClose = errors.New("multiple errors closing executable files")

549
// Close closes all internal readers.
550
func (bi *BinaryInfo) Close() error {
551 552 553 554 555
	var errs []error
	for _, image := range bi.Images {
		if err := image.Close(); err != nil {
			errs = append(errs, err)
		}
556
	}
557 558 559 560 561 562 563
	switch len(errs) {
	case 0:
		return nil
	case 1:
		return errs[0]
	default:
		return errBinaryInfoClose
564
	}
565 566
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
func (image *Image) Close() error {
	var err1, err2 error
	if image.sepDebugCloser != nil {
		err := image.sepDebugCloser.Close()
		if err != nil {
			err1 = fmt.Errorf("closing shared object %q (split dwarf): %v", image.Path, err)
		}
	}
	if image.closer != nil {
		err := image.closer.Close()
		if err != nil {
			err2 = fmt.Errorf("closing shared object %q: %v", image.Path, err)
		}
	}
	if err1 != nil && err2 != nil {
		return errBinaryInfoClose
	}
	if err1 != nil {
		return err1
	}
	return err2
588 589
}

590 591 592 593 594 595 596 597 598
func (image *Image) setLoadError(fmtstr string, args ...interface{}) {
	image.loadErrMu.Lock()
	image.loadErr = fmt.Errorf(fmtstr, args...)
	image.loadErrMu.Unlock()
}

// LoadError returns any error incurred while loading this image.
func (image *Image) LoadError() error {
	return image.loadErr
599 600
}

601 602 603 604
type nilCloser struct{}

func (c *nilCloser) Close() error { return nil }

605
// LoadImageFromData creates a new Image, using the specified data, and adds it to bi.
606
// This is used for debugging BinaryInfo, you should use LoadBinary instead.
607 608 609 610 611 612
func (bi *BinaryInfo) LoadImageFromData(dwdata *dwarf.Data, debugFrameBytes, debugLineBytes, debugLocBytes []byte) {
	image := &Image{}
	image.closer = (*nilCloser)(nil)
	image.sepDebugCloser = (*nilCloser)(nil)
	image.dwarf = dwdata
	image.typeCache = make(map[dwarf.Offset]godwarf.Type)
613 614

	if debugFrameBytes != nil {
615
		bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes), 0)
616 617
	}

618
	image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
619 620

	bi.loadDebugInfoMaps(image, debugLineBytes, nil, nil)
621

622
	bi.Images = append(bi.Images, image)
623 624
}

625
func (bi *BinaryInfo) locationExpr(entry reader.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
626 627
	a := entry.Val(attr)
	if a == nil {
628
		return nil, "", fmt.Errorf("no location attribute %s", attr)
629 630
	}
	if instr, ok := a.([]byte); ok {
631 632 633
		var descr bytes.Buffer
		fmt.Fprintf(&descr, "[block] ")
		op.PrettyPrint(&descr, instr)
634
		return instr, descr.String(), nil
635 636 637
	}
	off, ok := a.(int64)
	if !ok {
638
		return nil, "", fmt.Errorf("could not interpret location attribute %s", attr)
639 640 641
	}
	instr := bi.loclistEntry(off, pc)
	if instr == nil {
642
		return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x", off, pc)
643
	}
644 645 646
	var descr bytes.Buffer
	fmt.Fprintf(&descr, "[%#x:%#x] ", off, pc)
	op.PrettyPrint(&descr, instr)
647 648 649
	return instr, descr.String(), nil
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
// LocationCovers returns the list of PC addresses that is covered by the
// location attribute 'attr' of entry 'entry'.
func (bi *BinaryInfo) LocationCovers(entry *dwarf.Entry, attr dwarf.Attr) ([][2]uint64, error) {
	a := entry.Val(attr)
	if a == nil {
		return nil, fmt.Errorf("attribute %s not found", attr)
	}
	if _, isblock := a.([]byte); isblock {
		return [][2]uint64{[2]uint64{0, ^uint64(0)}}, nil
	}

	off, ok := a.(int64)
	if !ok {
		return nil, fmt.Errorf("attribute %s of unsupported type %T", attr, a)
	}
	cu := bi.findCompileUnitForOffset(entry.Offset)
	if cu == nil {
		return nil, errors.New("could not find compile unit")
	}

	image := cu.image
	base := cu.lowPC
672
	if image == nil || image.loclist.Empty() {
673 674 675 676
		return nil, errors.New("malformed executable")
	}

	r := [][2]uint64{}
677
	var e loclist.Entry
678 679 680
	image.loclist.Seek(int(off))
	for image.loclist.Next(&e) {
		if e.BaseAddressSelection() {
681
			base = e.HighPC
682 683
			continue
		}
684
		r = append(r, [2]uint64{e.LowPC + base, e.HighPC + base})
685 686 687 688
	}
	return r, nil
}

689 690 691 692 693 694 695 696 697
// Location returns the location described by attribute attr of entry.
// This will either be an int64 address or a slice of Pieces for locations
// that don't correspond to a single memory address (registers, composite
// locations).
func (bi *BinaryInfo) Location(entry reader.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
	instr, descr, err := bi.locationExpr(entry, attr, pc)
	if err != nil {
		return 0, nil, "", err
	}
698
	addr, pieces, err := op.ExecuteStackProgram(regs, instr)
699
	return addr, pieces, descr, err
700 701 702 703 704 705
}

// loclistEntry returns the loclist entry in the loclist starting at off,
// for address pc.
func (bi *BinaryInfo) loclistEntry(off int64, pc uint64) []byte {
	var base uint64
706
	image := bi.Images[0]
707
	if cu := bi.findCompileUnit(pc); cu != nil {
708
		base = cu.lowPC
709 710
		image = cu.image
	}
711
	if image == nil || image.loclist.Empty() {
712
		return nil
713 714
	}

715
	image.loclist.Seek(int(off))
716
	var e loclist.Entry
717
	for image.loclist.Next(&e) {
718
		if e.BaseAddressSelection() {
719
			base = e.HighPC
720 721
			continue
		}
722 723
		if pc >= e.LowPC+base && pc < e.HighPC+base {
			return e.Instr
724 725 726 727 728 729 730 731 732
		}
	}

	return nil
}

// findCompileUnit returns the compile unit containing address pc.
func (bi *BinaryInfo) findCompileUnit(pc uint64) *compileUnit {
	for _, cu := range bi.compileUnits {
733
		for _, rng := range cu.ranges {
734 735 736
			if pc >= rng[0] && pc < rng[1] {
				return cu
			}
737 738 739 740 741 742
		}
	}
	return nil
}

func (bi *BinaryInfo) findCompileUnitForOffset(off dwarf.Offset) *compileUnit {
743 744 745 746 747
	i := sort.Search(len(bi.compileUnits), func(i int) bool {
		return bi.compileUnits[i].offset >= off
	})
	if i > 0 {
		i--
748
	}
749
	return bi.compileUnits[i]
750 751
}

752
// Producer returns the value of DW_AT_producer.
753 754 755 756 757 758 759 760 761
func (bi *BinaryInfo) Producer() string {
	for _, cu := range bi.compileUnits {
		if cu.isgo && cu.producer != "" {
			return cu.producer
		}
	}
	return ""
}

762
// Type returns the Dwarf type entry at `offset`.
763 764 765 766 767 768 769 770 771 772 773
func (image *Image) Type(offset dwarf.Offset) (godwarf.Type, error) {
	return godwarf.ReadType(image.dwarf, image.index, offset, image.typeCache)
}

// funcToImage returns the Image containing function fn, or the
// executable file as a fallback.
func (bi *BinaryInfo) funcToImage(fn *Function) *Image {
	if fn == nil {
		return bi.Images[0]
	}
	return fn.cu.image
774 775
}

776 777
// ELF ///////////////////////////////////////////////////////////////

778
// ErrNoBuildIDNote is used in openSeparateDebugInfo to signal there's no
779 780
// build-id note on the binary, so LoadBinaryInfoElf will return
// the error message coming from elfFile.DWARF() instead.
781
type ErrNoBuildIDNote struct{}
782

783
func (e *ErrNoBuildIDNote) Error() string {
784 785 786 787 788 789 790 791
	return "can't find build-id note on binary"
}

// openSeparateDebugInfo searches for a file containing the separate
// debug info for the binary using the "build ID" method as described
// in GDB's documentation [1], and if found returns two handles, one
// for the bare file, and another for its corresponding elf.File.
// [1] https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
792 793 794
//
// Alternatively, if the debug file cannot be found be the build-id, Delve
// will look in directories specified by the debug-info-directories config value.
795
func (bi *BinaryInfo) openSeparateDebugInfo(image *Image, exe *elf.File, debugInfoDirectories []string) (*os.File, *elf.File, error) {
796 797 798 799 800 801 802 803 804 805
	var debugFilePath string
	for _, dir := range debugInfoDirectories {
		var potentialDebugFilePath string
		if strings.Contains(dir, "build-id") {
			desc1, desc2, err := parseBuildID(exe)
			if err != nil {
				continue
			}
			potentialDebugFilePath = fmt.Sprintf("%s/%s/%s.debug", dir, desc1, desc2)
		} else {
806
			potentialDebugFilePath = fmt.Sprintf("%s/%s.debug", dir, filepath.Base(image.Path))
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		}
		_, err := os.Stat(potentialDebugFilePath)
		if err == nil {
			debugFilePath = potentialDebugFilePath
			break
		}
	}
	if debugFilePath == "" {
		return nil, nil, ErrNoDebugInfoFound
	}
	sepFile, err := os.OpenFile(debugFilePath, 0, os.ModePerm)
	if err != nil {
		return nil, nil, errors.New("can't open separate debug file: " + err.Error())
	}

	elfFile, err := elf.NewFile(sepFile)
	if err != nil {
		sepFile.Close()
		return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, err.Error())
	}

	if elfFile.Machine != elf.EM_X86_64 {
		sepFile.Close()
		return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, ErrUnsupportedLinuxArch.Error())
	}

	return sepFile, elfFile, nil
}

func parseBuildID(exe *elf.File) (string, string, error) {
837 838
	buildid := exe.Section(".note.gnu.build-id")
	if buildid == nil {
839
		return "", "", &ErrNoBuildIDNote{}
840 841 842
	}

	br := buildid.Open()
843
	bh := new(buildIDHeader)
844
	if err := binary.Read(br, binary.LittleEndian, bh); err != nil {
845
		return "", "", errors.New("can't read build-id header: " + err.Error())
846 847 848 849
	}

	name := make([]byte, bh.Namesz)
	if err := binary.Read(br, binary.LittleEndian, name); err != nil {
850
		return "", "", errors.New("can't read build-id name: " + err.Error())
851 852 853
	}

	if strings.TrimSpace(string(name)) != "GNU\x00" {
854
		return "", "", errors.New("invalid build-id signature")
855 856 857 858
	}

	descBinary := make([]byte, bh.Descsz)
	if err := binary.Read(br, binary.LittleEndian, descBinary); err != nil {
859
		return "", "", errors.New("can't read build-id desc: " + err.Error())
860 861
	}
	desc := hex.EncodeToString(descBinary)
862
	return desc[:2], desc[2:], nil
863 864
}

865 866
// loadBinaryInfoElf specifically loads information from an ELF binary.
func loadBinaryInfoElf(bi *BinaryInfo, image *Image, path string, addr uint64, wg *sync.WaitGroup) error {
867 868 869 870
	exe, err := os.OpenFile(path, 0, os.ModePerm)
	if err != nil {
		return err
	}
871
	image.closer = exe
872 873 874 875 876
	elfFile, err := elf.NewFile(exe)
	if err != nil {
		return err
	}
	if elfFile.Machine != elf.EM_X86_64 {
877
		return ErrUnsupportedLinuxArch
878
	}
879

880 881 882 883 884 885 886 887 888
	if image.index == 0 {
		// adding executable file:
		// - addr is entryPoint therefore staticBase needs to be calculated by
		//   subtracting the entry point specified in the executable file from addr.
		// - memory address of the .dynamic section needs to be recorded in
		//   BinaryInfo so that we can find loaded libraries.
		if addr != 0 {
			image.StaticBase = addr - elfFile.Entry
		} else if elfFile.Type == elf.ET_DYN {
889 890
			return ErrCouldNotDetermineRelocation
		}
891 892 893 894 895 896
		if dynsec := elfFile.Section(".dynamic"); dynsec != nil {
			bi.ElfDynamicSection.Addr = dynsec.Addr + image.StaticBase
			bi.ElfDynamicSection.Size = dynsec.Size
		}
	} else {
		image.StaticBase = addr
897 898
	}

899
	dwarfFile := elfFile
900

901
	image.dwarf, err = elfFile.DWARF()
902
	if err != nil {
903 904
		var sepFile *os.File
		var serr error
905
		sepFile, dwarfFile, serr = bi.openSeparateDebugInfo(image, elfFile, bi.debugInfoDirectories)
906 907 908
		if serr != nil {
			return serr
		}
909 910
		image.sepDebugCloser = sepFile
		image.dwarf, err = dwarfFile.DWARF()
911 912 913
		if err != nil {
			return err
		}
914 915
	}

916
	image.dwarfReader = image.dwarf.Reader()
917

918
	debugLineBytes, err := godwarf.GetDebugSectionElf(dwarfFile, "line")
919 920 921
	if err != nil {
		return err
	}
922
	debugLocBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loc")
923
	image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
924

925 926 927 928 929 930 931 932
	wg.Add(2)
	go bi.parseDebugFrameElf(image, dwarfFile, wg)
	go bi.loadDebugInfoMaps(image, debugLineBytes, wg, nil)
	if image.index == 0 {
		// determine g struct offset only when loading the executable file
		wg.Add(1)
		go bi.setGStructOffsetElf(image, dwarfFile, wg)
	}
933 934 935
	return nil
}

936
func (bi *BinaryInfo) parseDebugFrameElf(image *Image, exe *elf.File, wg *sync.WaitGroup) {
937 938
	defer wg.Done()

939 940
	debugFrameData, err := godwarf.GetDebugSectionElf(exe, "frame")
	if err != nil {
941
		image.setLoadError("could not get .debug_frame section: %v", err)
942
		return
943
	}
944 945
	debugInfoData, err := godwarf.GetDebugSectionElf(exe, "info")
	if err != nil {
946
		image.setLoadError("could not get .debug_info section: %v", err)
947
		return
948 949
	}

950
	bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameData, frame.DwarfEndian(debugInfoData), image.StaticBase))
951 952
}

953
func (bi *BinaryInfo) setGStructOffsetElf(image *Image, exe *elf.File, wg *sync.WaitGroup) {
954 955 956 957 958 959 960 961 962 963
	defer wg.Done()

	// This is a bit arcane. Essentially:
	// - If the program is pure Go, it can do whatever it wants, and puts the G
	//   pointer at %fs-8.
	// - Otherwise, Go asks the external linker to place the G pointer by
	//   emitting runtime.tlsg, a TLS symbol, which is relocated to the chosen
	//   offset in libc's TLS block.
	symbols, err := exe.Symbols()
	if err != nil {
964
		image.setLoadError("could not parse ELF symbols: %v", err)
965
		return
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	}
	var tlsg *elf.Symbol
	for _, symbol := range symbols {
		if symbol.Name == "runtime.tlsg" {
			s := symbol
			tlsg = &s
			break
		}
	}
	if tlsg == nil {
		bi.gStructOffset = ^uint64(8) + 1 // -8
		return
	}
	var tls *elf.Prog
	for _, prog := range exe.Progs {
		if prog.Type == elf.PT_TLS {
			tls = prog
			break
		}
	}
986 987 988 989
	if tls == nil {
		bi.gStructOffset = ^uint64(8) + 1 // -8
		return
	}
990

991 992 993 994 995 996
	// According to https://reviews.llvm.org/D61824, linkers must pad the actual
	// size of the TLS segment to ensure that (tlsoffset%align) == (vaddr%align).
	// This formula, copied from the lld code, matches that.
	// https://github.com/llvm-mirror/lld/blob/9aef969544981d76bea8e4d1961d3a6980980ef9/ELF/InputSection.cpp#L643
	memsz := tls.Memsz + (-tls.Vaddr-tls.Memsz)&(tls.Align-1)

997 998
	// The TLS register points to the end of the TLS block, which is
	// tls.Memsz long. runtime.tlsg is an offset from the beginning of that block.
999
	bi.gStructOffset = ^(memsz) + 1 + tlsg.Value // -tls.Memsz + tlsg.Value
1000 1001
}

1002 1003
// PE ////////////////////////////////////////////////////////////////

1004 1005
const _IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE = 0x0040

1006 1007
// loadBinaryInfoPE specifically loads information from a PE binary.
func loadBinaryInfoPE(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error {
1008 1009 1010 1011
	peFile, closer, err := openExecutablePathPE(path)
	if err != nil {
		return err
	}
1012
	image.closer = closer
1013
	if peFile.Machine != pe.IMAGE_FILE_MACHINE_AMD64 {
1014
		return ErrUnsupportedWindowsArch
1015
	}
1016
	image.dwarf, err = peFile.DWARF()
1017 1018 1019 1020
	if err != nil {
		return err
	}

1021 1022 1023
	//TODO(aarzilli): actually test this when Go supports PIE buildmode on Windows.
	opth := peFile.OptionalHeader.(*pe.OptionalHeader64)
	if entryPoint != 0 {
1024
		image.StaticBase = entryPoint - opth.ImageBase
1025 1026 1027 1028 1029 1030
	} else {
		if opth.DllCharacteristics&_IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE != 0 {
			return ErrCouldNotDetermineRelocation
		}
	}

1031
	image.dwarfReader = image.dwarf.Reader()
1032

1033
	debugLineBytes, err := godwarf.GetDebugSectionPE(peFile, "line")
1034 1035 1036
	if err != nil {
		return err
	}
1037
	debugLocBytes, _ := godwarf.GetDebugSectionPE(peFile, "loc")
1038
	image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
1039 1040

	wg.Add(2)
1041 1042
	go bi.parseDebugFramePE(image, peFile, wg)
	go bi.loadDebugInfoMaps(image, debugLineBytes, wg, nil)
1043 1044 1045 1046 1047 1048

	// Use ArbitraryUserPointer (0x28) as pointer to pointer
	// to G struct per:
	// https://golang.org/src/runtime/cgo/gcc_windows_amd64.c

	bi.gStructOffset = 0x28
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	return nil
}

func openExecutablePathPE(path string) (*pe.File, io.Closer, error) {
	f, err := os.OpenFile(path, 0, os.ModePerm)
	if err != nil {
		return nil, nil, err
	}
	peFile, err := pe.NewFile(f)
	if err != nil {
		f.Close()
		return nil, nil, err
	}
	return peFile, f, nil
}

1065
func (bi *BinaryInfo) parseDebugFramePE(image *Image, exe *pe.File, wg *sync.WaitGroup) {
1066 1067
	defer wg.Done()

1068 1069
	debugFrameBytes, err := godwarf.GetDebugSectionPE(exe, "frame")
	if err != nil {
1070
		image.setLoadError("could not get .debug_frame section: %v", err)
1071
		return
1072
	}
1073 1074
	debugInfoBytes, err := godwarf.GetDebugSectionPE(exe, "info")
	if err != nil {
1075
		image.setLoadError("could not get .debug_info section: %v", err)
1076 1077 1078
		return
	}

1079
	bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), image.StaticBase))
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

// Borrowed from https://golang.org/src/cmd/internal/objfile/pe.go
func findPESymbol(f *pe.File, name string) (*pe.Symbol, error) {
	for _, s := range f.Symbols {
		if s.Name != name {
			continue
		}
		if s.SectionNumber <= 0 {
			return nil, fmt.Errorf("symbol %s: invalid section number %d", name, s.SectionNumber)
		}
		if len(f.Sections) < int(s.SectionNumber) {
			return nil, fmt.Errorf("symbol %s: section number %d is larger than max %d", name, s.SectionNumber, len(f.Sections))
		}
		return s, nil
	}
	return nil, fmt.Errorf("no %s symbol found", name)
}

// MACH-O ////////////////////////////////////////////////////////////

1101 1102
// loadBinaryInfoMacho specifically loads information from a Mach-O binary.
func loadBinaryInfoMacho(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error {
1103 1104 1105 1106
	exe, err := macho.Open(path)
	if err != nil {
		return err
	}
1107
	image.closer = exe
1108
	if exe.Cpu != macho.CpuAmd64 {
1109
		return ErrUnsupportedDarwinArch
1110
	}
1111
	image.dwarf, err = exe.DWARF()
1112 1113 1114 1115
	if err != nil {
		return err
	}

1116
	image.dwarfReader = image.dwarf.Reader()
1117

1118
	debugLineBytes, err := godwarf.GetDebugSectionMacho(exe, "line")
1119 1120 1121
	if err != nil {
		return err
	}
1122
	debugLocBytes, _ := godwarf.GetDebugSectionMacho(exe, "loc")
1123
	image.loclist = loclist.New(debugLocBytes, bi.Arch.PtrSize())
1124 1125

	wg.Add(2)
1126 1127
	go bi.parseDebugFrameMacho(image, exe, wg)
	go bi.loadDebugInfoMaps(image, debugLineBytes, wg, bi.setGStructOffsetMacho)
1128 1129 1130
	return nil
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
func (bi *BinaryInfo) setGStructOffsetMacho() {
	// In go1.11 it's 0x30, before 0x8a0, see:
	// https://github.com/golang/go/issues/23617
	// and go commit b3a854c733257c5249c3435ffcee194f8439676a
	producer := bi.Producer()
	if producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
		bi.gStructOffset = 0x30
		return
	}
	bi.gStructOffset = 0x8a0
}

1143
func (bi *BinaryInfo) parseDebugFrameMacho(image *Image, exe *macho.File, wg *sync.WaitGroup) {
1144 1145
	defer wg.Done()

1146 1147
	debugFrameBytes, err := godwarf.GetDebugSectionMacho(exe, "frame")
	if err != nil {
1148
		image.setLoadError("could not get __debug_frame section: %v", err)
1149
		return
1150
	}
1151 1152
	debugInfoBytes, err := godwarf.GetDebugSectionMacho(exe, "info")
	if err != nil {
1153
		image.setLoadError("could not get .debug_info section: %v", err)
1154
		return
1155
	}
1156

1157
	bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), image.StaticBase))
1158
}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

// Do not call this function directly it isn't able to deal correctly with package paths
func (bi *BinaryInfo) findType(name string) (godwarf.Type, error) {
	ref, found := bi.types[name]
	if !found {
		return nil, reader.TypeNotFoundErr
	}
	image := bi.Images[ref.imageIndex]
	return godwarf.ReadType(image.dwarf, ref.imageIndex, ref.offset, image.typeCache)
}

func (bi *BinaryInfo) findTypeExpr(expr ast.Expr) (godwarf.Type, error) {
	if lit, islit := expr.(*ast.BasicLit); islit && lit.Kind == token.STRING {
		// Allow users to specify type names verbatim as quoted
		// string. Useful as a catch-all workaround for cases where we don't
		// parse/serialize types correctly or can not resolve package paths.
		typn, _ := strconv.Unquote(lit.Value)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

		// Check if the type in question is an array type, in which case we try to
		// fake it.
		if len(typn) > 0 && typn[0] == '[' {
			closedBrace := strings.Index(typn, "]")
			if closedBrace > 1 {
				n, err := strconv.Atoi(typn[1:closedBrace])
				if err == nil {
					return bi.findArrayType(n, typn[closedBrace+1:])
				}
			}
		}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		return bi.findType(typn)
	}
	bi.expandPackagesInType(expr)
	if snode, ok := expr.(*ast.StarExpr); ok {
		// Pointer types only appear in the dwarf informations when
		// a pointer to the type is used in the target program, here
		// we create a pointer type on the fly so that the user can
		// specify a pointer to any variable used in the target program
		ptyp, err := bi.findTypeExpr(snode.X)
		if err != nil {
			return nil, err
		}
		return pointerTo(ptyp, bi.Arch), nil
	}
	if anode, ok := expr.(*ast.ArrayType); ok {
1203
		// Array types (for example [N]byte) are only present in DWARF if they are
1204
		// used by the program, but it's convenient to make all of them available
1205 1206 1207 1208 1209
		// to the user for two reasons:
		// 1. to allow reading arbitrary memory byte-by-byte (by casting an
		//    address to an array of bytes).
		// 2. to read the contents of a channel's buffer (we create fake array
		//    types for them)
1210 1211 1212 1213

		alen, litlen := anode.Len.(*ast.BasicLit)
		if litlen && alen.Kind == token.INT {
			n, _ := strconv.Atoi(alen.Value)
1214
			return bi.findArrayType(n, exprToString(anode.Elt))
1215 1216 1217 1218 1219
		}
	}
	return bi.findType(exprToString(expr))
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
func (bi *BinaryInfo) findArrayType(n int, etyp string) (godwarf.Type, error) {
	switch etyp {
	case "byte", "uint8":
		etyp = "uint8"
		fallthrough
	default:
		btyp, err := bi.findType(etyp)
		if err != nil {
			return nil, err
		}
		return fakeArrayType(uint64(n), btyp), nil
	}
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
func complexType(typename string) bool {
	for _, ch := range typename {
		switch ch {
		case '*', '[', '<', '{', '(', ' ':
			return true
		}
	}
	return false
}

func (bi *BinaryInfo) registerTypeToPackageMap(entry *dwarf.Entry) {
	if entry.Tag != dwarf.TagTypedef && entry.Tag != dwarf.TagBaseType && entry.Tag != dwarf.TagClassType && entry.Tag != dwarf.TagStructType {
		return
	}

	typename, ok := entry.Val(dwarf.AttrName).(string)
	if !ok || complexType(typename) {
		return
	}

	dot := strings.LastIndex(typename, ".")
	if dot < 0 {
		return
	}
	path := typename[:dot]
	slash := strings.LastIndex(path, "/")
	if slash < 0 || slash+1 >= len(path) {
		return
	}
	name := path[slash+1:]
1264
	bi.PackageMap[name] = []string{path}
1265 1266 1267 1268 1269 1270 1271
}

func (bi *BinaryInfo) loadDebugInfoMaps(image *Image, debugLineBytes []byte, wg *sync.WaitGroup, cont func()) {
	if wg != nil {
		defer wg.Done()
	}

1272
	if bi.types == nil {
1273
		bi.types = make(map[string]dwarfRef)
1274 1275
	}
	if bi.consts == nil {
1276
		bi.consts = make(map[dwarfRef]*constantType)
1277
	}
1278 1279
	if bi.PackageMap == nil {
		bi.PackageMap = make(map[string][]string)
1280
	}
1281 1282 1283 1284
	if bi.inlinedCallLines == nil {
		bi.inlinedCallLines = make(map[fileLine][]uint64)
	}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	image.runtimeTypeToDIE = make(map[uint64]runtimeTypeDIE)

	ctxt := newLoadDebugInfoMapsContext(bi, image)

	reader := image.DwarfReader()

	for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
		if err != nil {
			image.setLoadError("error reading debug_info: %v", err)
			break
		}
		switch entry.Tag {
		case dwarf.TagCompileUnit:
			cu := &compileUnit{}
			cu.image = image
			cu.entry = entry
			cu.offset = entry.Offset
			if lang, _ := entry.Val(dwarf.AttrLanguage).(int64); lang == dwarfGoLanguage {
				cu.isgo = true
			}
			cu.name, _ = entry.Val(dwarf.AttrName).(string)
			compdir, _ := entry.Val(dwarf.AttrCompDir).(string)
			if compdir != "" {
				cu.name = filepath.Join(compdir, cu.name)
			}
			cu.ranges, _ = image.dwarf.Ranges(entry)
			for i := range cu.ranges {
				cu.ranges[i][0] += image.StaticBase
				cu.ranges[i][1] += image.StaticBase
			}
			if len(cu.ranges) >= 1 {
				cu.lowPC = cu.ranges[0][0]
			}
			lineInfoOffset, _ := entry.Val(dwarf.AttrStmtList).(int64)
			if lineInfoOffset >= 0 && lineInfoOffset < int64(len(debugLineBytes)) {
				var logfn func(string, ...interface{})
				if logflags.DebugLineErrors() {
					logger := logrus.New().WithFields(logrus.Fields{"layer": "dwarf-line"})
					logger.Logger.Level = logrus.DebugLevel
					logfn = func(fmt string, args ...interface{}) {
						logger.Printf(fmt, args)
					}
				}
				cu.lineInfo = line.Parse(compdir, bytes.NewBuffer(debugLineBytes[lineInfoOffset:]), logfn, image.StaticBase)
			}
			cu.producer, _ = entry.Val(dwarf.AttrProducer).(string)
			if cu.isgo && cu.producer != "" {
				semicolon := strings.Index(cu.producer, ";")
				if semicolon < 0 {
					cu.optimized = goversion.ProducerAfterOrEqual(cu.producer, 1, 10)
				} else {
					cu.optimized = !strings.Contains(cu.producer[semicolon:], "-N") || !strings.Contains(cu.producer[semicolon:], "-l")
					cu.producer = cu.producer[:semicolon]
				}
			}
1340 1341 1342 1343
			gopkg, _ := entry.Val(godwarf.AttrGoPackageName).(string)
			if cu.isgo && gopkg != "" {
				bi.PackageMap[gopkg] = append(bi.PackageMap[gopkg], escapePackagePath(strings.Replace(cu.name, "\\", "/", -1)))
			}
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
			bi.compileUnits = append(bi.compileUnits, cu)
			if entry.Children {
				bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu)
			}

		case dwarf.TagPartialUnit:
			reader.SkipChildren()

		default:
			// ignore unknown tags
			reader.SkipChildren()
		}
	}

	sort.Sort(compileUnitsByOffset(bi.compileUnits))
	sort.Sort(functionsDebugInfoByEntry(bi.Functions))
	sort.Sort(packageVarsByAddr(bi.packageVars))

	bi.LookupFunc = make(map[string]*Function)
	for i := range bi.Functions {
		bi.LookupFunc[bi.Functions[i].Name] = &bi.Functions[i]
	}

	bi.Sources = []string{}
	for _, cu := range bi.compileUnits {
		if cu.lineInfo != nil {
			for _, fileEntry := range cu.lineInfo.FileNames {
				bi.Sources = append(bi.Sources, fileEntry.Path)
			}
		}
	}
	sort.Strings(bi.Sources)
	bi.Sources = uniq(bi.Sources)

	if cont != nil {
		cont()
	}
}

// loadDebugInfoMapsCompileUnit loads entry from a single compile unit.
func (bi *BinaryInfo) loadDebugInfoMapsCompileUnit(ctxt *loadDebugInfoMapsContext, image *Image, reader *reader.Reader, cu *compileUnit) {
1385 1386
	hasAttrGoPkgName := goversion.ProducerAfterOrEqual(cu.producer, 1, 13)

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
		if err != nil {
			image.setLoadError("error reading debug_info: %v", err)
			return
		}
		switch entry.Tag {
		case 0:
			return
		case dwarf.TagImportedUnit:
			bi.loadDebugInfoMapsImportedUnit(entry, ctxt, image, cu)
			reader.SkipChildren()

		case dwarf.TagArrayType, dwarf.TagBaseType, dwarf.TagClassType, dwarf.TagStructType, dwarf.TagUnionType, dwarf.TagConstType, dwarf.TagVolatileType, dwarf.TagRestrictType, dwarf.TagEnumerationType, dwarf.TagPointerType, dwarf.TagSubroutineType, dwarf.TagTypedef, dwarf.TagUnspecifiedType:
			if name, ok := entry.Val(dwarf.AttrName).(string); ok {
				if !cu.isgo {
					name = "C." + name
				}
				if _, exists := bi.types[name]; !exists {
					bi.types[name] = dwarfRef{image.index, entry.Offset}
				}
			}
1408
			if cu != nil && cu.isgo && !hasAttrGoPkgName {
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
				bi.registerTypeToPackageMap(entry)
			}
			image.registerRuntimeTypeToDIE(entry, ctxt.ardr)
			reader.SkipChildren()

		case dwarf.TagVariable:
			if n, ok := entry.Val(dwarf.AttrName).(string); ok {
				var addr uint64
				if loc, ok := entry.Val(dwarf.AttrLocation).([]byte); ok {
					if len(loc) == bi.Arch.PtrSize()+1 && op.Opcode(loc[0]) == op.DW_OP_addr {
						addr = binary.LittleEndian.Uint64(loc[1:])
					}
				}
				if !cu.isgo {
					n = "C." + n
				}
				if _, known := ctxt.knownPackageVars[n]; !known {
					bi.packageVars = append(bi.packageVars, packageVar{n, cu, entry.Offset, addr + image.StaticBase})
				}
			}
			reader.SkipChildren()

		case dwarf.TagConstant:
			name, okName := entry.Val(dwarf.AttrName).(string)
			typ, okType := entry.Val(dwarf.AttrType).(dwarf.Offset)
			val, okVal := entry.Val(dwarf.AttrConstValue).(int64)
			if okName && okType && okVal {
				if !cu.isgo {
					name = "C." + name
				}
				ct := bi.consts[dwarfRef{image.index, typ}]
				if ct == nil {
					ct = &constantType{}
					bi.consts[dwarfRef{image.index, typ}] = ct
				}
				ct.values = append(ct.values, constantValue{name: name, fullName: name, value: val})
			}
			reader.SkipChildren()

		case dwarf.TagSubprogram:
			inlined := false
			if inval, ok := entry.Val(dwarf.AttrInline).(int64); ok {
				inlined = inval == 1
			}
1453 1454 1455 1456

			if inlined {
				bi.addAbstractSubprogram(entry, ctxt, reader, image, cu)
			} else {
1457 1458
				originOffset, hasAbstractOrigin := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
				if hasAbstractOrigin {
1459 1460 1461
					bi.addConcreteInlinedSubprogram(entry, originOffset, ctxt, reader, cu)
				} else {
					bi.addConcreteSubprogram(entry, ctxt, reader, cu)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
				}
			}
		}
	}
}

// loadDebugInfoMapsImportedUnit loads entries into cu from the partial unit
// referenced in a DW_TAG_imported_unit entry.
func (bi *BinaryInfo) loadDebugInfoMapsImportedUnit(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, image *Image, cu *compileUnit) {
	off, ok := entry.Val(dwarf.AttrImport).(dwarf.Offset)
	if !ok {
		return
	}
	reader := image.DwarfReader()
	reader.Seek(off)
	imentry, err := reader.Next()
	if err != nil {
		return
	}
	if imentry.Tag != dwarf.TagPartialUnit {
		return
	}
	bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu)
}

1487 1488 1489 1490
// addAbstractSubprogram adds the abstract entry for an inlined function.
func (bi *BinaryInfo) addAbstractSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, image *Image, cu *compileUnit) {
	name, ok := subprogramEntryName(entry, cu)
	if !ok {
1491
		bi.logger.Warnf("reading debug_info: abstract subprogram without name at %#x", entry.Offset)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

	fn := Function{
		Name:   name,
		offset: entry.Offset,
		cu:     cu,
	}

	if entry.Children {
1505
		bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
1506 1507 1508
	}

	bi.Functions = append(bi.Functions, fn)
1509
	ctxt.abstractOriginTable[entry.Offset] = len(bi.Functions) - 1
1510 1511 1512 1513 1514 1515
}

// addConcreteInlinedSubprogram adds the concrete entry of a subprogram that was also inlined.
func (bi *BinaryInfo) addConcreteInlinedSubprogram(entry *dwarf.Entry, originOffset dwarf.Offset, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
	lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
	if !ok {
1516
		bi.logger.Warnf("reading debug_info: concrete inlined subprogram without address range at %#x", entry.Offset)
1517 1518 1519 1520 1521 1522
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

1523
	originIdx, ok := ctxt.abstractOriginTable[originOffset]
1524
	if !ok {
1525
		bi.logger.Warnf("reading debug_info: could not find abstract origin of concrete inlined subprogram at %#x (origin offset %#x)", entry.Offset, originOffset)
1526 1527 1528 1529 1530 1531
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

1532 1533 1534 1535
	fn := &bi.Functions[originIdx]
	fn.offset = entry.Offset
	fn.Entry = lowpc
	fn.End = highpc
1536 1537

	if entry.Children {
1538
		bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
1539 1540 1541 1542
	}
}

// addConcreteSubprogram adds a concrete subprogram (a normal subprogram
1543
// that doesn't have abstract or inlined entries)
1544 1545 1546
func (bi *BinaryInfo) addConcreteSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
	lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
	if !ok {
1547
		bi.logger.Warnf("reading debug_info: concrete subprogram without address range at %#x", entry.Offset)
1548 1549 1550 1551 1552 1553 1554 1555
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

	name, ok := subprogramEntryName(entry, cu)
	if !ok {
1556
		bi.logger.Warnf("reading debug_info: concrete subprogram without name at %#x", entry.Offset)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

	fn := Function{
		Name:   name,
		Entry:  lowpc,
		End:    highpc,
		offset: entry.Offset,
		cu:     cu,
	}
	bi.Functions = append(bi.Functions, fn)

	if entry.Children {
1573
		bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	}
}

func subprogramEntryName(entry *dwarf.Entry, cu *compileUnit) (string, bool) {
	name, ok := entry.Val(dwarf.AttrName).(string)
	if !ok {
		return "", false
	}
	if !cu.isgo {
		name = "C." + name
	}
	return name, true
}

func subprogramEntryRange(entry *dwarf.Entry, image *Image) (lowpc, highpc uint64, ok bool) {
	ok = false
	if ranges, _ := image.dwarf.Ranges(entry); len(ranges) >= 1 {
		ok = true
		lowpc = ranges[0][0] + image.StaticBase
		highpc = ranges[0][1] + image.StaticBase
	}
	return lowpc, highpc, ok
}

1598
func (bi *BinaryInfo) loadDebugInfoMapsInlinedCalls(ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	for {
		entry, err := reader.Next()
		if err != nil {
			cu.image.setLoadError("error reading debug_info: %v", err)
			return
		}
		switch entry.Tag {
		case 0:
			return
		case dwarf.TagInlinedSubroutine:
			originOffset, ok := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
			if !ok {
1611
				bi.logger.Warnf("reading debug_info: inlined call without origin offset at %#x", entry.Offset)
1612 1613 1614 1615
				reader.SkipChildren()
				continue
			}

1616
			originIdx, ok := ctxt.abstractOriginTable[originOffset]
1617
			if !ok {
1618
				bi.logger.Warnf("reading debug_info: could not find abstract origin (%#x) of inlined call at %#x", originOffset, entry.Offset)
1619 1620 1621
				reader.SkipChildren()
				continue
			}
1622
			fn := &bi.Functions[originIdx]
1623 1624 1625

			lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
			if !ok {
1626
				bi.logger.Warnf("reading debug_info: inlined call without address range at %#x", entry.Offset)
1627 1628 1629 1630 1631 1632 1633
				reader.SkipChildren()
				continue
			}

			callfileidx, ok1 := entry.Val(dwarf.AttrCallFile).(int64)
			callline, ok2 := entry.Val(dwarf.AttrCallLine).(int64)
			if !ok1 || !ok2 {
1634
				bi.logger.Warnf("reading debug_info: inlined call without CallFile/CallLine at %#x", entry.Offset)
1635 1636 1637
				reader.SkipChildren()
				continue
			}
1638
			if cu.lineInfo == nil {
1639
				bi.logger.Warnf("reading debug_info: inlined call on a compilation unit without debug_line section at %#x", entry.Offset)
1640 1641 1642
				reader.SkipChildren()
				continue
			}
1643
			if int(callfileidx-1) >= len(cu.lineInfo.FileNames) {
1644
				bi.logger.Warnf("reading debug_info: CallFile (%d) of inlined call does not exist in compile unit file table at %#x", callfileidx, entry.Offset)
1645 1646 1647 1648 1649
				reader.SkipChildren()
				continue
			}
			callfile := cu.lineInfo.FileNames[callfileidx-1].Path

1650 1651 1652 1653
			fn.InlinedCalls = append(fn.InlinedCalls, InlinedCall{
				cu:     cu,
				LowPC:  lowpc,
				HighPC: highpc,
1654
			})
1655 1656 1657

			fl := fileLine{callfile, int(callline)}
			bi.inlinedCallLines[fl] = append(bi.inlinedCallLines[fl], lowpc)
1658 1659 1660 1661 1662
		}
		reader.SkipChildren()
	}
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
func uniq(s []string) []string {
	if len(s) <= 0 {
		return s
	}
	src, dst := 1, 1
	for src < len(s) {
		if s[src] != s[dst-1] {
			s[dst] = s[src]
			dst++
		}
		src++
	}
	return s[:dst]
}

func (bi *BinaryInfo) expandPackagesInType(expr ast.Expr) {
	switch e := expr.(type) {
	case *ast.ArrayType:
		bi.expandPackagesInType(e.Elt)
	case *ast.ChanType:
		bi.expandPackagesInType(e.Value)
	case *ast.FuncType:
		for i := range e.Params.List {
			bi.expandPackagesInType(e.Params.List[i].Type)
		}
		if e.Results != nil {
			for i := range e.Results.List {
				bi.expandPackagesInType(e.Results.List[i].Type)
			}
		}
	case *ast.MapType:
		bi.expandPackagesInType(e.Key)
		bi.expandPackagesInType(e.Value)
	case *ast.ParenExpr:
		bi.expandPackagesInType(e.X)
	case *ast.SelectorExpr:
		switch x := e.X.(type) {
		case *ast.Ident:
1701 1702 1703 1704 1705 1706 1707
			if len(bi.PackageMap[x.Name]) > 0 {
				// There's no particular reason to expect the first entry to be the
				// correct one if the package name is ambiguous, but trying all possible
				// expansions of all types mentioned in the expression is complicated
				// and, besides type assertions, users can always specify the type they
				// want exactly, using a string.
				x.Name = bi.PackageMap[x.Name][0]
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			}
		default:
			bi.expandPackagesInType(e.X)
		}
	case *ast.StarExpr:
		bi.expandPackagesInType(e.X)
	default:
		// nothing to do
	}
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
// escapePackagePath returns pkg with '.' replaced with '%2e' (in all
// elements of the path except the first one) like Go does in variable and
// type names.
func escapePackagePath(pkg string) string {
	slash := strings.Index(pkg, "/")
	if slash < 0 {
		slash = 0
	}
	return pkg[:slash] + strings.Replace(pkg[slash:], ".", "%2e", -1)
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
// Looks up symbol (either functions or global variables) at address addr.
// Used by disassembly formatter.
func (bi *BinaryInfo) symLookup(addr uint64) (string, uint64) {
	fn := bi.PCToFunc(addr)
	if fn != nil {
		if fn.Entry == addr {
			// only report the function name if it's the exact address because it's
			// easier to read the absolute address than function_name+offset.
			return fn.Name, fn.Entry
		}
		return "", 0
	}
	i := sort.Search(len(bi.packageVars), func(i int) bool {
		return bi.packageVars[i].addr >= addr
	})
	if i >= len(bi.packageVars) {
		return "", 0
	}
	if bi.packageVars[i].addr > addr {
		// report previous variable + offset if i-th variable starts after addr
		i--
	}
1752
	if i >= 0 && bi.packageVars[i].addr != 0 {
1753 1754 1755 1756
		return bi.packageVars[i].name, bi.packageVars[i].addr
	}
	return "", 0
}