bininfo.go 51.5 KB
Newer Older
1 2 3
package proc

import (
4
	"bytes"
5 6 7
	"debug/dwarf"
	"debug/elf"
	"debug/macho"
8
	"debug/pe"
9
	"encoding/binary"
10
	"encoding/hex"
11 12
	"errors"
	"fmt"
13 14
	"go/ast"
	"go/token"
15 16
	"io"
	"os"
17
	"path/filepath"
18
	"sort"
19
	"strconv"
20
	"strings"
21 22 23
	"sync"
	"time"

24 25 26 27 28 29
	"github.com/go-delve/delve/pkg/dwarf/frame"
	"github.com/go-delve/delve/pkg/dwarf/godwarf"
	"github.com/go-delve/delve/pkg/dwarf/line"
	"github.com/go-delve/delve/pkg/dwarf/op"
	"github.com/go-delve/delve/pkg/dwarf/reader"
	"github.com/go-delve/delve/pkg/goversion"
30 31
	"github.com/go-delve/delve/pkg/logflags"
	"github.com/sirupsen/logrus"
32 33
)

34 35
// BinaryInfo holds information on the binaries being executed (this
// includes both the executable and also any loaded libraries).
36
type BinaryInfo struct {
D
Derek Parker 已提交
37 38 39 40 41 42
	// Architecture of this binary.
	Arch Arch

	// GOOS operating system this binary is executing on.
	GOOS string

43 44
	debugInfoDirectories []string

D
Derek Parker 已提交
45 46 47 48 49 50 51
	// Functions is a list of all DW_TAG_subprogram entries in debug_info, sorted by entry point
	Functions []Function
	// Sources is a list of all source files found in debug_line.
	Sources []string
	// LookupFunc maps function names to a description of the function.
	LookupFunc map[string]*Function

52
	// Images is a list of loaded shared libraries (also known as
J
Justin Clift 已提交
53
	// shared objects on linux or DLLs on windows).
54 55 56 57
	Images []*Image

	ElfDynamicSection ElfDynamicSection

58 59
	lastModified time.Time // Time the executable of this process was last modified

60 61
	closer         io.Closer
	sepDebugCloser io.Closer
62 63 64 65

	// Maps package names to package paths, needed to lookup types inside DWARF info
	packageMap map[string]string

D
Derek Parker 已提交
66
	frameEntries frame.FrameDescriptionEntries
67 68 69 70 71

	compileUnits []*compileUnit // compileUnits is sorted by increasing DWARF offset

	types       map[string]dwarfRef
	packageVars []packageVar // packageVars is a list of all global/package variables in debug_info, sorted by address
72

D
Derek Parker 已提交
73
	gStructOffset uint64
74

75 76 77 78
	// nameOfRuntimeType maps an address of a runtime._type struct to its
	// decoded name. Used with versions of Go <= 1.10 to figure out the DIE of
	// the concrete type of interfaces.
	nameOfRuntimeType map[uintptr]nameOfRuntimeTypeEntry
79

80 81
	// consts[off] lists all the constants with the type defined at offset off.
	consts constantsMap
82

83 84 85 86 87
	// inlinedCallLines maps a file:line pair, corresponding to the header line
	// of a function to a list of PC addresses where an inlined call to that
	// function starts.
	inlinedCallLines map[fileLine][]uint64

88
	logger *logrus.Entry
89 90
}

91 92 93 94 95 96 97 98
// ErrUnsupportedLinuxArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedLinuxArch = errors.New("unsupported architecture - only linux/amd64 is supported")

// ErrUnsupportedWindowsArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedWindowsArch = errors.New("unsupported architecture of windows/386 - only windows/amd64 is supported")

// ErrUnsupportedDarwinArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedDarwinArch = errors.New("unsupported architecture - only darwin/amd64 is supported")
99

100 101
// ErrCouldNotDetermineRelocation is an error returned when Delve could not determine the base address of a
// position independant executable.
102 103
var ErrCouldNotDetermineRelocation = errors.New("could not determine the base address of a PIE")

104 105 106
// ErrNoDebugInfoFound is returned when Delve cannot open the debug_info
// section or find an external debug info file.
var ErrNoDebugInfoFound = errors.New("could not open debug info")
107

108 109 110
const dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231)

type compileUnit struct {
111 112 113
	name   string // univocal name for non-go compile units
	lowPC  uint64
	ranges [][2]uint64
114

115 116 117 118 119
	entry     *dwarf.Entry        // debug_info entry describing this compile unit
	isgo      bool                // true if this is the go compile unit
	lineInfo  *line.DebugLineInfo // debug_line segment associated with this compile unit
	optimized bool                // this compile unit is optimized
	producer  string              // producer attribute
120

121
	offset dwarf.Offset // offset of the entry describing the compile unit
122 123 124 125

	image *Image // parent image of this compilation unit.
}

126 127 128 129 130
type fileLine struct {
	file string
	line int
}

131 132 133 134
// dwarfRef is a reference to a Debug Info Entry inside a shared object.
type dwarfRef struct {
	imageIndex int
	offset     dwarf.Offset
135 136
}

137 138 139 140
// InlinedCall represents a concrete inlined call to a function.
type InlinedCall struct {
	cu            *compileUnit
	LowPC, HighPC uint64 // Address range of the generated inlined instructions
141 142
}

143 144 145 146 147 148
// Function describes a function in the target program.
type Function struct {
	Name       string
	Entry, End uint64 // same as DW_AT_lowpc and DW_AT_highpc
	offset     dwarf.Offset
	cu         *compileUnit
149 150 151

	// InlinedCalls lists all inlined calls to this function
	InlinedCalls []InlinedCall
152 153 154 155 156 157
}

// PackageName returns the package part of the symbol name,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) PackageName() string {
158 159 160 161 162
	return packageName(fn.Name)
}

func packageName(name string) string {
	pathend := strings.LastIndex(name, "/")
163 164 165 166
	if pathend < 0 {
		pathend = 0
	}

167 168
	if i := strings.Index(name[pathend:], "."); i != -1 {
		return name[:pathend+i]
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	}
	return ""
}

// ReceiverName returns the receiver type name of this symbol,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) ReceiverName() string {
	pathend := strings.LastIndex(fn.Name, "/")
	if pathend < 0 {
		pathend = 0
	}
	l := strings.Index(fn.Name[pathend:], ".")
	r := strings.LastIndex(fn.Name[pathend:], ".")
	if l == -1 || r == -1 || l == r {
		return ""
	}
	return fn.Name[pathend+l+1 : pathend+r]
}

// BaseName returns the symbol name without the package or receiver name.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) BaseName() string {
	if i := strings.LastIndex(fn.Name, "."); i != -1 {
		return fn.Name[i+1:]
	}
	return fn.Name
}

198 199 200 201 202
// Optimized returns true if the function was optimized by the compiler.
func (fn *Function) Optimized() bool {
	return fn.cu.optimized
}

203 204 205 206 207 208 209 210 211
// PrologueEndPC returns the PC just after the function prologue
func (fn *Function) PrologueEndPC() uint64 {
	pc, _, _, ok := fn.cu.lineInfo.PrologueEndPC(fn.Entry, fn.End)
	if !ok {
		return fn.Entry
	}
	return pc
}

212
type constantsMap map[dwarfRef]*constantType
213 214 215 216 217 218 219 220 221 222 223 224 225

type constantType struct {
	initialized bool
	values      []constantValue
}

type constantValue struct {
	name      string
	fullName  string
	value     int64
	singleBit bool
}

226 227 228 229 230
// packageVar represents a package-level variable (or a C global variable).
// If a global variable does not have an address (for example it's stored in
// a register, or non-contiguously) addr will be 0.
type packageVar struct {
	name   string
231
	cu     *compileUnit
232 233 234 235
	offset dwarf.Offset
	addr   uint64
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
type loclistReader struct {
	data  []byte
	cur   int
	ptrSz int
}

func (rdr *loclistReader) Seek(off int) {
	rdr.cur = off
}

func (rdr *loclistReader) read(sz int) []byte {
	r := rdr.data[rdr.cur : rdr.cur+sz]
	rdr.cur += sz
	return r
}

func (rdr *loclistReader) oneAddr() uint64 {
	switch rdr.ptrSz {
	case 4:
		addr := binary.LittleEndian.Uint32(rdr.read(rdr.ptrSz))
		if addr == ^uint32(0) {
			return ^uint64(0)
		}
		return uint64(addr)
	case 8:
		addr := uint64(binary.LittleEndian.Uint64(rdr.read(rdr.ptrSz)))
		return addr
	default:
		panic("bad address size")
	}
}

func (rdr *loclistReader) Next(e *loclistEntry) bool {
	e.lowpc = rdr.oneAddr()
	e.highpc = rdr.oneAddr()

	if e.lowpc == 0 && e.highpc == 0 {
		return false
	}

	if e.BaseAddressSelection() {
		e.instr = nil
		return true
	}

	instrlen := binary.LittleEndian.Uint16(rdr.read(2))
	e.instr = rdr.read(int(instrlen))
	return true
}

type loclistEntry struct {
	lowpc, highpc uint64
	instr         []byte
}

291 292 293 294 295
type runtimeTypeDIE struct {
	offset dwarf.Offset
	kind   int64
}

296 297 298 299
func (e *loclistEntry) BaseAddressSelection() bool {
	return e.lowpc == ^uint64(0)
}

300
type buildIDHeader struct {
301 302 303 304 305
	Namesz uint32
	Descsz uint32
	Type   uint32
}

306 307 308 309 310 311
// ElfDynamicSection describes the .dynamic section of an ELF executable.
type ElfDynamicSection struct {
	Addr uint64 // relocated address of where the .dynamic section is mapped in memory
	Size uint64 // size of the .dynamic section of the executable
}

312 313
// NewBinaryInfo returns an initialized but unloaded BinaryInfo struct.
func NewBinaryInfo(goos, goarch string) *BinaryInfo {
314
	r := &BinaryInfo{GOOS: goos, nameOfRuntimeType: make(map[uintptr]nameOfRuntimeTypeEntry), logger: logflags.DebuggerLogger()}
315

316
	// TODO: find better way to determine proc arch (perhaps use executable file info).
317 318
	switch goarch {
	case "amd64":
319
		r.Arch = AMD64Arch(goos)
320 321 322 323 324
	}

	return r
}

325
// LoadBinaryInfo will load and store the information from the binary at 'path'.
326
func (bi *BinaryInfo) LoadBinaryInfo(path string, entryPoint uint64, debugInfoDirs []string) error {
327 328
	fi, err := os.Stat(path)
	if err == nil {
329
		bi.lastModified = fi.ModTime()
330 331
	}

332 333 334 335 336 337
	bi.debugInfoDirectories = debugInfoDirs

	return bi.AddImage(path, entryPoint)
}

func loadBinaryInfo(bi *BinaryInfo, image *Image, path string, entryPoint uint64) error {
338 339
	var wg sync.WaitGroup
	defer wg.Wait()
340

341
	switch bi.GOOS {
342
	case "linux", "freebsd":
343
		return loadBinaryInfoElf(bi, image, path, entryPoint, &wg)
344
	case "windows":
345
		return loadBinaryInfoPE(bi, image, path, entryPoint, &wg)
346
	case "darwin":
347
		return loadBinaryInfoMacho(bi, image, path, entryPoint, &wg)
348 349 350 351
	}
	return errors.New("unsupported operating system")
}

352 353 354 355 356 357
// GStructOffset returns the offset of the G
// struct in thread local storage.
func (bi *BinaryInfo) GStructOffset() uint64 {
	return bi.gStructOffset
}

358
// LastModified returns the last modified time of the binary.
359 360 361 362 363
func (bi *BinaryInfo) LastModified() time.Time {
	return bi.lastModified
}

// DwarfReader returns a reader for the dwarf data
364 365
func (so *Image) DwarfReader() *reader.Reader {
	return reader.New(so.dwarf)
366 367 368 369 370 371 372 373 374 375 376 377
}

// Types returns list of types present in the debugged program.
func (bi *BinaryInfo) Types() ([]string, error) {
	types := make([]string, 0, len(bi.types))
	for k := range bi.types {
		types = append(types, k)
	}
	return types, nil
}

// PCToLine converts an instruction address to a file/line/function.
378 379 380 381 382
func (bi *BinaryInfo) PCToLine(pc uint64) (string, int, *Function) {
	fn := bi.PCToFunc(pc)
	if fn == nil {
		return "", 0, nil
	}
A
aarzilli 已提交
383
	f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc)
384
	return f, ln, fn
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398 399
type ErrCouldNotFindLine struct {
	fileFound bool
	filename  string
	lineno    int
}

func (err *ErrCouldNotFindLine) Error() string {
	if err.fileFound {
		return fmt.Sprintf("could not find statement at %s:%d, please use a line with a statement", err.filename, err.lineno)
	}
	return fmt.Sprintf("could not find file %s", err.filename)
}

400 401 402 403
// LineToPC converts a file:line into a list of matching memory addresses,
// corresponding to the first instruction matching the specified file:line
// in the containing function and all its inlined calls.
func (bi *BinaryInfo) LineToPC(filename string, lineno int) (pcs []uint64, err error) {
404
	fileFound := false
405
	var pc uint64
406
	for _, cu := range bi.compileUnits {
407 408 409 410 411 412 413
		if cu.lineInfo.Lookup[filename] == nil {
			continue
		}
		fileFound = true
		pc = cu.lineInfo.LineToPC(filename, lineno)
		if pc != 0 {
			break
414 415
		}
	}
416

417 418 419 420 421 422 423
	if pc == 0 {
		// Check if the line contained a call to a function that was inlined, in
		// that case it's possible for the line itself to not appear in debug_line
		// at all, but it will still be in debug_info as the call site for an
		// inlined subroutine entry.
		if pcs := bi.inlinedCallLines[fileLine{filename, lineno}]; len(pcs) != 0 {
			return pcs, nil
A
aarzilli 已提交
424
		}
425 426 427 428 429 430 431 432 433 434 435 436 437 438
		return nil, &ErrCouldNotFindLine{fileFound, filename, lineno}
	}
	// The code above will find the first occurence of an instruction
	// corresponding to filename:line. If the function corresponding to that
	// instruction has been inlined we don't just want to return the first
	// occurence (which could be either the concrete version of the function or
	// one of the inlinings) but instead:
	// - the first instruction corresponding to filename:line in the concrete
	//   version of the function
	// - the first instruction corresponding to filename:line in each inlined
	//   instance of the function.
	fn := bi.PCToInlineFunc(pc)
	if fn == nil {
		return []uint64{pc}, nil
A
aarzilli 已提交
439
	}
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	pcs = make([]uint64, 0, len(fn.InlinedCalls)+1)
	pcs = appendLineToPCIn(pcs, filename, lineno, fn.cu, fn, fn.Entry, fn.End)
	for _, call := range fn.InlinedCalls {
		pcs = appendLineToPCIn(pcs, filename, lineno, call.cu, bi.PCToFunc(call.LowPC), call.LowPC, call.HighPC)
	}
	return pcs, nil
}

func appendLineToPCIn(pcs []uint64, filename string, lineno int, cu *compileUnit, containingFn *Function, lowPC, highPC uint64) []uint64 {
	var entry uint64
	if containingFn != nil {
		entry = containingFn.Entry
	}
	pc := cu.lineInfo.LineToPCIn(filename, lineno, entry, lowPC, highPC)
	if pc != 0 {
		return append(pcs, pc)
	}
	return pcs
A
aarzilli 已提交
458 459
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473
// AllPCsForFileLines returns a map providing all PC addresses for filename and each line in linenos
func (bi *BinaryInfo) AllPCsForFileLines(filename string, linenos []int) map[int][]uint64 {
	r := make(map[int][]uint64)
	for _, line := range linenos {
		r[line] = make([]uint64, 0, 1)
	}
	for _, cu := range bi.compileUnits {
		if cu.lineInfo.Lookup[filename] != nil {
			cu.lineInfo.AllPCsForFileLines(filename, r)
		}
	}
	return r
}

474 475
// PCToFunc returns the concrete function containing the given PC address.
// If the PC address belongs to an inlined call it will return the containing function.
476 477 478 479 480 481 482 483 484 485 486 487
func (bi *BinaryInfo) PCToFunc(pc uint64) *Function {
	i := sort.Search(len(bi.Functions), func(i int) bool {
		fn := bi.Functions[i]
		return pc <= fn.Entry || (fn.Entry <= pc && pc < fn.End)
	})
	if i != len(bi.Functions) {
		fn := &bi.Functions[i]
		if fn.Entry <= pc && pc < fn.End {
			return fn
		}
	}
	return nil
488 489
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
// PCToInlineFunc returns the function containing the given PC address.
// If the PC address belongs to an inlined call it will return the inlined function.
func (bi *BinaryInfo) PCToInlineFunc(pc uint64) *Function {
	fn := bi.PCToFunc(pc)
	irdr := reader.InlineStack(fn.cu.image.dwarf, fn.offset, reader.ToRelAddr(pc, fn.cu.image.StaticBase))
	var inlineFnEntry *dwarf.Entry
	for irdr.Next() {
		inlineFnEntry = irdr.Entry()
	}

	if inlineFnEntry == nil {
		return fn
	}

	e, _ := reader.LoadAbstractOrigin(inlineFnEntry, fn.cu.image.dwarfReader)
	fnname, okname := e.Val(dwarf.AttrName).(string)
	if !okname {
		return fn
	}

	return bi.LookupFunc[fnname]
}

513 514
// PCToImage returns the image containing the given PC address.
func (bi *BinaryInfo) PCToImage(pc uint64) *Image {
515 516 517 518
	fn := bi.PCToFunc(pc)
	return bi.funcToImage(fn)
}

519 520
// Image represents a loaded library file (shared object on linux, DLL on windows).
type Image struct {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	Path       string
	StaticBase uint64
	addr       uint64

	index int // index of this object in BinaryInfo.SharedObjects

	closer         io.Closer
	sepDebugCloser io.Closer

	dwarf       *dwarf.Data
	dwarfReader *dwarf.Reader
	loclist     loclistReader

	typeCache map[dwarf.Offset]godwarf.Type

	// runtimeTypeToDIE maps between the offset of a runtime._type in
	// runtime.moduledata.types and the offset of the DIE in debug_info. This
	// map is filled by using the extended attribute godwarf.AttrGoRuntimeType
	// which was added in go 1.11.
	runtimeTypeToDIE map[uint64]runtimeTypeDIE

	loadErrMu sync.Mutex
	loadErr   error
544 545
}

546 547 548 549 550 551 552 553
func (image *Image) registerRuntimeTypeToDIE(entry *dwarf.Entry, ardr *reader.Reader) {
	if off, ok := entry.Val(godwarf.AttrGoRuntimeType).(uint64); ok {
		if _, ok := image.runtimeTypeToDIE[off]; !ok {
			image.runtimeTypeToDIE[off+image.StaticBase] = runtimeTypeDIE{entry.Offset, -1}
		}
	}
}

554 555 556 557 558 559 560 561
// AddImage adds the specified image to bi, loading data asynchronously.
// Addr is the relocated entry point for the executable and staticBase (i.e.
// the relocation offset) for all other images.
// The first image added must be the executable file.
func (bi *BinaryInfo) AddImage(path string, addr uint64) error {
	// Check if the image is already present.
	if len(bi.Images) > 0 && !strings.HasPrefix(path, "/") {
		return nil
562 563 564
	}
	for _, image := range bi.Images {
		if image.Path == path && image.addr == addr {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
			return nil
		}
	}

	// Actually add the image.
	image := &Image{Path: path, addr: addr, typeCache: make(map[dwarf.Offset]godwarf.Type)}
	// add Image regardless of error so that we don't attempt to re-add it every time we stop
	image.index = len(bi.Images)
	bi.Images = append(bi.Images, image)
	err := loadBinaryInfo(bi, image, path, addr)
	if err != nil {
		bi.Images[len(bi.Images)-1].loadErr = err
	}
	return err
}

// moduleDataToImage finds the image corresponding to the given module data object.
func (bi *BinaryInfo) moduleDataToImage(md *moduleData) *Image {
	return bi.funcToImage(bi.PCToFunc(uint64(md.text)))
}

// imageToModuleData finds the module data in mds corresponding to the given image.
func (bi *BinaryInfo) imageToModuleData(image *Image, mds []moduleData) *moduleData {
	for _, md := range mds {
		im2 := bi.moduleDataToImage(&md)
		if im2.index == image.index {
			return &md
592 593
		}
	}
594
	return nil
595 596
}

597 598 599 600 601 602 603
// typeToImage returns the image containing the give type.
func (bi *BinaryInfo) typeToImage(typ godwarf.Type) *Image {
	return bi.Images[typ.Common().Index]
}

var errBinaryInfoClose = errors.New("multiple errors closing executable files")

604
// Close closes all internal readers.
605
func (bi *BinaryInfo) Close() error {
606 607 608 609 610
	var errs []error
	for _, image := range bi.Images {
		if err := image.Close(); err != nil {
			errs = append(errs, err)
		}
611
	}
612 613 614 615 616 617 618
	switch len(errs) {
	case 0:
		return nil
	case 1:
		return errs[0]
	default:
		return errBinaryInfoClose
619
	}
620 621
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
func (image *Image) Close() error {
	var err1, err2 error
	if image.sepDebugCloser != nil {
		err := image.sepDebugCloser.Close()
		if err != nil {
			err1 = fmt.Errorf("closing shared object %q (split dwarf): %v", image.Path, err)
		}
	}
	if image.closer != nil {
		err := image.closer.Close()
		if err != nil {
			err2 = fmt.Errorf("closing shared object %q: %v", image.Path, err)
		}
	}
	if err1 != nil && err2 != nil {
		return errBinaryInfoClose
	}
	if err1 != nil {
		return err1
	}
	return err2
643 644
}

645 646 647 648 649 650 651 652 653
func (image *Image) setLoadError(fmtstr string, args ...interface{}) {
	image.loadErrMu.Lock()
	image.loadErr = fmt.Errorf(fmtstr, args...)
	image.loadErrMu.Unlock()
}

// LoadError returns any error incurred while loading this image.
func (image *Image) LoadError() error {
	return image.loadErr
654 655
}

656 657 658 659
type nilCloser struct{}

func (c *nilCloser) Close() error { return nil }

660
// LoadImageFromData creates a new Image, using the specified data, and adds it to bi.
661
// This is used for debugging BinaryInfo, you should use LoadBinary instead.
662 663 664 665 666 667
func (bi *BinaryInfo) LoadImageFromData(dwdata *dwarf.Data, debugFrameBytes, debugLineBytes, debugLocBytes []byte) {
	image := &Image{}
	image.closer = (*nilCloser)(nil)
	image.sepDebugCloser = (*nilCloser)(nil)
	image.dwarf = dwdata
	image.typeCache = make(map[dwarf.Offset]godwarf.Type)
668 669

	if debugFrameBytes != nil {
670
		bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes), 0)
671 672
	}

673 674 675
	image.loclistInit(debugLocBytes, bi.Arch.PtrSize())

	bi.loadDebugInfoMaps(image, debugLineBytes, nil, nil)
676

677
	bi.Images = append(bi.Images, image)
678 679
}

680 681 682
func (image *Image) loclistInit(data []byte, ptrSz int) {
	image.loclist.data = data
	image.loclist.ptrSz = ptrSz
683 684
}

685
func (bi *BinaryInfo) locationExpr(entry reader.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
686 687
	a := entry.Val(attr)
	if a == nil {
688
		return nil, "", fmt.Errorf("no location attribute %s", attr)
689 690
	}
	if instr, ok := a.([]byte); ok {
691 692 693
		var descr bytes.Buffer
		fmt.Fprintf(&descr, "[block] ")
		op.PrettyPrint(&descr, instr)
694
		return instr, descr.String(), nil
695 696 697
	}
	off, ok := a.(int64)
	if !ok {
698
		return nil, "", fmt.Errorf("could not interpret location attribute %s", attr)
699 700 701
	}
	instr := bi.loclistEntry(off, pc)
	if instr == nil {
702
		return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x", off, pc)
703
	}
704 705 706
	var descr bytes.Buffer
	fmt.Fprintf(&descr, "[%#x:%#x] ", off, pc)
	op.PrettyPrint(&descr, instr)
707 708 709
	return instr, descr.String(), nil
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
// LocationCovers returns the list of PC addresses that is covered by the
// location attribute 'attr' of entry 'entry'.
func (bi *BinaryInfo) LocationCovers(entry *dwarf.Entry, attr dwarf.Attr) ([][2]uint64, error) {
	a := entry.Val(attr)
	if a == nil {
		return nil, fmt.Errorf("attribute %s not found", attr)
	}
	if _, isblock := a.([]byte); isblock {
		return [][2]uint64{[2]uint64{0, ^uint64(0)}}, nil
	}

	off, ok := a.(int64)
	if !ok {
		return nil, fmt.Errorf("attribute %s of unsupported type %T", attr, a)
	}
	cu := bi.findCompileUnitForOffset(entry.Offset)
	if cu == nil {
		return nil, errors.New("could not find compile unit")
	}

	image := cu.image
	base := cu.lowPC
	if image == nil || image.loclist.data == nil {
		return nil, errors.New("malformed executable")
	}

	r := [][2]uint64{}
	image.loclist.Seek(int(off))
	var e loclistEntry
	for image.loclist.Next(&e) {
		if e.BaseAddressSelection() {
			base = e.highpc
			continue
		}
		r = append(r, [2]uint64{e.lowpc + base, e.highpc + base})
	}
	return r, nil
}

749 750 751 752 753 754 755 756 757
// Location returns the location described by attribute attr of entry.
// This will either be an int64 address or a slice of Pieces for locations
// that don't correspond to a single memory address (registers, composite
// locations).
func (bi *BinaryInfo) Location(entry reader.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
	instr, descr, err := bi.locationExpr(entry, attr, pc)
	if err != nil {
		return 0, nil, "", err
	}
758
	addr, pieces, err := op.ExecuteStackProgram(regs, instr)
759
	return addr, pieces, descr, err
760 761 762 763 764 765
}

// loclistEntry returns the loclist entry in the loclist starting at off,
// for address pc.
func (bi *BinaryInfo) loclistEntry(off int64, pc uint64) []byte {
	var base uint64
766
	image := bi.Images[0]
767
	if cu := bi.findCompileUnit(pc); cu != nil {
768
		base = cu.lowPC
769 770 771 772
		image = cu.image
	}
	if image == nil || image.loclist.data == nil {
		return nil
773 774
	}

775
	image.loclist.Seek(int(off))
776
	var e loclistEntry
777
	for image.loclist.Next(&e) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		if e.BaseAddressSelection() {
			base = e.highpc
			continue
		}
		if pc >= e.lowpc+base && pc < e.highpc+base {
			return e.instr
		}
	}

	return nil
}

// findCompileUnit returns the compile unit containing address pc.
func (bi *BinaryInfo) findCompileUnit(pc uint64) *compileUnit {
	for _, cu := range bi.compileUnits {
793
		for _, rng := range cu.ranges {
794 795 796
			if pc >= rng[0] && pc < rng[1] {
				return cu
			}
797 798 799 800 801 802
		}
	}
	return nil
}

func (bi *BinaryInfo) findCompileUnitForOffset(off dwarf.Offset) *compileUnit {
803 804 805 806 807
	i := sort.Search(len(bi.compileUnits), func(i int) bool {
		return bi.compileUnits[i].offset >= off
	})
	if i > 0 {
		i--
808
	}
809
	return bi.compileUnits[i]
810 811
}

812
// Producer returns the value of DW_AT_producer.
813 814 815 816 817 818 819 820 821
func (bi *BinaryInfo) Producer() string {
	for _, cu := range bi.compileUnits {
		if cu.isgo && cu.producer != "" {
			return cu.producer
		}
	}
	return ""
}

822
// Type returns the Dwarf type entry at `offset`.
823 824 825 826 827 828 829 830 831 832 833
func (image *Image) Type(offset dwarf.Offset) (godwarf.Type, error) {
	return godwarf.ReadType(image.dwarf, image.index, offset, image.typeCache)
}

// funcToImage returns the Image containing function fn, or the
// executable file as a fallback.
func (bi *BinaryInfo) funcToImage(fn *Function) *Image {
	if fn == nil {
		return bi.Images[0]
	}
	return fn.cu.image
834 835
}

836 837
// ELF ///////////////////////////////////////////////////////////////

838
// ErrNoBuildIDNote is used in openSeparateDebugInfo to signal there's no
839 840
// build-id note on the binary, so LoadBinaryInfoElf will return
// the error message coming from elfFile.DWARF() instead.
841
type ErrNoBuildIDNote struct{}
842

843
func (e *ErrNoBuildIDNote) Error() string {
844 845 846 847 848 849 850 851
	return "can't find build-id note on binary"
}

// openSeparateDebugInfo searches for a file containing the separate
// debug info for the binary using the "build ID" method as described
// in GDB's documentation [1], and if found returns two handles, one
// for the bare file, and another for its corresponding elf.File.
// [1] https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
852 853 854
//
// Alternatively, if the debug file cannot be found be the build-id, Delve
// will look in directories specified by the debug-info-directories config value.
855
func (bi *BinaryInfo) openSeparateDebugInfo(image *Image, exe *elf.File, debugInfoDirectories []string) (*os.File, *elf.File, error) {
856 857 858 859 860 861 862 863 864 865
	var debugFilePath string
	for _, dir := range debugInfoDirectories {
		var potentialDebugFilePath string
		if strings.Contains(dir, "build-id") {
			desc1, desc2, err := parseBuildID(exe)
			if err != nil {
				continue
			}
			potentialDebugFilePath = fmt.Sprintf("%s/%s/%s.debug", dir, desc1, desc2)
		} else {
866
			potentialDebugFilePath = fmt.Sprintf("%s/%s.debug", dir, filepath.Base(image.Path))
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
		}
		_, err := os.Stat(potentialDebugFilePath)
		if err == nil {
			debugFilePath = potentialDebugFilePath
			break
		}
	}
	if debugFilePath == "" {
		return nil, nil, ErrNoDebugInfoFound
	}
	sepFile, err := os.OpenFile(debugFilePath, 0, os.ModePerm)
	if err != nil {
		return nil, nil, errors.New("can't open separate debug file: " + err.Error())
	}

	elfFile, err := elf.NewFile(sepFile)
	if err != nil {
		sepFile.Close()
		return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, err.Error())
	}

	if elfFile.Machine != elf.EM_X86_64 {
		sepFile.Close()
		return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, ErrUnsupportedLinuxArch.Error())
	}

	return sepFile, elfFile, nil
}

func parseBuildID(exe *elf.File) (string, string, error) {
897 898
	buildid := exe.Section(".note.gnu.build-id")
	if buildid == nil {
899
		return "", "", &ErrNoBuildIDNote{}
900 901 902
	}

	br := buildid.Open()
903
	bh := new(buildIDHeader)
904
	if err := binary.Read(br, binary.LittleEndian, bh); err != nil {
905
		return "", "", errors.New("can't read build-id header: " + err.Error())
906 907 908 909
	}

	name := make([]byte, bh.Namesz)
	if err := binary.Read(br, binary.LittleEndian, name); err != nil {
910
		return "", "", errors.New("can't read build-id name: " + err.Error())
911 912 913
	}

	if strings.TrimSpace(string(name)) != "GNU\x00" {
914
		return "", "", errors.New("invalid build-id signature")
915 916 917 918
	}

	descBinary := make([]byte, bh.Descsz)
	if err := binary.Read(br, binary.LittleEndian, descBinary); err != nil {
919
		return "", "", errors.New("can't read build-id desc: " + err.Error())
920 921
	}
	desc := hex.EncodeToString(descBinary)
922
	return desc[:2], desc[2:], nil
923 924
}

925 926
// loadBinaryInfoElf specifically loads information from an ELF binary.
func loadBinaryInfoElf(bi *BinaryInfo, image *Image, path string, addr uint64, wg *sync.WaitGroup) error {
927 928 929 930
	exe, err := os.OpenFile(path, 0, os.ModePerm)
	if err != nil {
		return err
	}
931
	image.closer = exe
932 933 934 935 936
	elfFile, err := elf.NewFile(exe)
	if err != nil {
		return err
	}
	if elfFile.Machine != elf.EM_X86_64 {
937
		return ErrUnsupportedLinuxArch
938
	}
939

940 941 942 943 944 945 946 947 948
	if image.index == 0 {
		// adding executable file:
		// - addr is entryPoint therefore staticBase needs to be calculated by
		//   subtracting the entry point specified in the executable file from addr.
		// - memory address of the .dynamic section needs to be recorded in
		//   BinaryInfo so that we can find loaded libraries.
		if addr != 0 {
			image.StaticBase = addr - elfFile.Entry
		} else if elfFile.Type == elf.ET_DYN {
949 950
			return ErrCouldNotDetermineRelocation
		}
951 952 953 954 955 956
		if dynsec := elfFile.Section(".dynamic"); dynsec != nil {
			bi.ElfDynamicSection.Addr = dynsec.Addr + image.StaticBase
			bi.ElfDynamicSection.Size = dynsec.Size
		}
	} else {
		image.StaticBase = addr
957 958
	}

959
	dwarfFile := elfFile
960

961
	image.dwarf, err = elfFile.DWARF()
962
	if err != nil {
963 964
		var sepFile *os.File
		var serr error
965
		sepFile, dwarfFile, serr = bi.openSeparateDebugInfo(image, elfFile, bi.debugInfoDirectories)
966 967 968
		if serr != nil {
			return serr
		}
969 970
		image.sepDebugCloser = sepFile
		image.dwarf, err = dwarfFile.DWARF()
971 972 973
		if err != nil {
			return err
		}
974 975
	}

976
	image.dwarfReader = image.dwarf.Reader()
977

978
	debugLineBytes, err := godwarf.GetDebugSectionElf(dwarfFile, "line")
979 980 981
	if err != nil {
		return err
	}
982
	debugLocBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loc")
983
	image.loclistInit(debugLocBytes, bi.Arch.PtrSize())
984

985 986 987 988 989 990 991 992
	wg.Add(2)
	go bi.parseDebugFrameElf(image, dwarfFile, wg)
	go bi.loadDebugInfoMaps(image, debugLineBytes, wg, nil)
	if image.index == 0 {
		// determine g struct offset only when loading the executable file
		wg.Add(1)
		go bi.setGStructOffsetElf(image, dwarfFile, wg)
	}
993 994 995
	return nil
}

996
func (bi *BinaryInfo) parseDebugFrameElf(image *Image, exe *elf.File, wg *sync.WaitGroup) {
997 998
	defer wg.Done()

999 1000
	debugFrameData, err := godwarf.GetDebugSectionElf(exe, "frame")
	if err != nil {
1001
		image.setLoadError("could not get .debug_frame section: %v", err)
1002
		return
1003
	}
1004 1005
	debugInfoData, err := godwarf.GetDebugSectionElf(exe, "info")
	if err != nil {
1006
		image.setLoadError("could not get .debug_info section: %v", err)
1007
		return
1008 1009
	}

1010
	bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameData, frame.DwarfEndian(debugInfoData), image.StaticBase))
1011 1012
}

1013
func (bi *BinaryInfo) setGStructOffsetElf(image *Image, exe *elf.File, wg *sync.WaitGroup) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	defer wg.Done()

	// This is a bit arcane. Essentially:
	// - If the program is pure Go, it can do whatever it wants, and puts the G
	//   pointer at %fs-8.
	// - Otherwise, Go asks the external linker to place the G pointer by
	//   emitting runtime.tlsg, a TLS symbol, which is relocated to the chosen
	//   offset in libc's TLS block.
	symbols, err := exe.Symbols()
	if err != nil {
1024
		image.setLoadError("could not parse ELF symbols: %v", err)
1025
		return
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	}
	var tlsg *elf.Symbol
	for _, symbol := range symbols {
		if symbol.Name == "runtime.tlsg" {
			s := symbol
			tlsg = &s
			break
		}
	}
	if tlsg == nil {
		bi.gStructOffset = ^uint64(8) + 1 // -8
		return
	}
	var tls *elf.Prog
	for _, prog := range exe.Progs {
		if prog.Type == elf.PT_TLS {
			tls = prog
			break
		}
	}
1046 1047 1048 1049
	if tls == nil {
		bi.gStructOffset = ^uint64(8) + 1 // -8
		return
	}
1050

1051 1052 1053 1054 1055 1056
	// According to https://reviews.llvm.org/D61824, linkers must pad the actual
	// size of the TLS segment to ensure that (tlsoffset%align) == (vaddr%align).
	// This formula, copied from the lld code, matches that.
	// https://github.com/llvm-mirror/lld/blob/9aef969544981d76bea8e4d1961d3a6980980ef9/ELF/InputSection.cpp#L643
	memsz := tls.Memsz + (-tls.Vaddr-tls.Memsz)&(tls.Align-1)

1057 1058
	// The TLS register points to the end of the TLS block, which is
	// tls.Memsz long. runtime.tlsg is an offset from the beginning of that block.
1059
	bi.gStructOffset = ^(memsz) + 1 + tlsg.Value // -tls.Memsz + tlsg.Value
1060 1061
}

1062 1063
// PE ////////////////////////////////////////////////////////////////

1064 1065
const _IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE = 0x0040

1066 1067
// loadBinaryInfoPE specifically loads information from a PE binary.
func loadBinaryInfoPE(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error {
1068 1069 1070 1071
	peFile, closer, err := openExecutablePathPE(path)
	if err != nil {
		return err
	}
1072
	image.closer = closer
1073
	if peFile.Machine != pe.IMAGE_FILE_MACHINE_AMD64 {
1074
		return ErrUnsupportedWindowsArch
1075
	}
1076
	image.dwarf, err = peFile.DWARF()
1077 1078 1079 1080
	if err != nil {
		return err
	}

1081 1082 1083
	//TODO(aarzilli): actually test this when Go supports PIE buildmode on Windows.
	opth := peFile.OptionalHeader.(*pe.OptionalHeader64)
	if entryPoint != 0 {
1084
		image.StaticBase = entryPoint - opth.ImageBase
1085 1086 1087 1088 1089 1090
	} else {
		if opth.DllCharacteristics&_IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE != 0 {
			return ErrCouldNotDetermineRelocation
		}
	}

1091
	image.dwarfReader = image.dwarf.Reader()
1092

1093
	debugLineBytes, err := godwarf.GetDebugSectionPE(peFile, "line")
1094 1095 1096
	if err != nil {
		return err
	}
1097
	debugLocBytes, _ := godwarf.GetDebugSectionPE(peFile, "loc")
1098
	image.loclistInit(debugLocBytes, bi.Arch.PtrSize())
1099 1100

	wg.Add(2)
1101 1102
	go bi.parseDebugFramePE(image, peFile, wg)
	go bi.loadDebugInfoMaps(image, debugLineBytes, wg, nil)
1103 1104 1105 1106 1107 1108

	// Use ArbitraryUserPointer (0x28) as pointer to pointer
	// to G struct per:
	// https://golang.org/src/runtime/cgo/gcc_windows_amd64.c

	bi.gStructOffset = 0x28
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	return nil
}

func openExecutablePathPE(path string) (*pe.File, io.Closer, error) {
	f, err := os.OpenFile(path, 0, os.ModePerm)
	if err != nil {
		return nil, nil, err
	}
	peFile, err := pe.NewFile(f)
	if err != nil {
		f.Close()
		return nil, nil, err
	}
	return peFile, f, nil
}

1125
func (bi *BinaryInfo) parseDebugFramePE(image *Image, exe *pe.File, wg *sync.WaitGroup) {
1126 1127
	defer wg.Done()

1128 1129
	debugFrameBytes, err := godwarf.GetDebugSectionPE(exe, "frame")
	if err != nil {
1130
		image.setLoadError("could not get .debug_frame section: %v", err)
1131
		return
1132
	}
1133 1134
	debugInfoBytes, err := godwarf.GetDebugSectionPE(exe, "info")
	if err != nil {
1135
		image.setLoadError("could not get .debug_info section: %v", err)
1136 1137 1138
		return
	}

1139
	bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), image.StaticBase))
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
}

// Borrowed from https://golang.org/src/cmd/internal/objfile/pe.go
func findPESymbol(f *pe.File, name string) (*pe.Symbol, error) {
	for _, s := range f.Symbols {
		if s.Name != name {
			continue
		}
		if s.SectionNumber <= 0 {
			return nil, fmt.Errorf("symbol %s: invalid section number %d", name, s.SectionNumber)
		}
		if len(f.Sections) < int(s.SectionNumber) {
			return nil, fmt.Errorf("symbol %s: section number %d is larger than max %d", name, s.SectionNumber, len(f.Sections))
		}
		return s, nil
	}
	return nil, fmt.Errorf("no %s symbol found", name)
}

// MACH-O ////////////////////////////////////////////////////////////

1161 1162
// loadBinaryInfoMacho specifically loads information from a Mach-O binary.
func loadBinaryInfoMacho(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error {
1163 1164 1165 1166
	exe, err := macho.Open(path)
	if err != nil {
		return err
	}
1167
	image.closer = exe
1168
	if exe.Cpu != macho.CpuAmd64 {
1169
		return ErrUnsupportedDarwinArch
1170
	}
1171
	image.dwarf, err = exe.DWARF()
1172 1173 1174 1175
	if err != nil {
		return err
	}

1176
	image.dwarfReader = image.dwarf.Reader()
1177

1178
	debugLineBytes, err := godwarf.GetDebugSectionMacho(exe, "line")
1179 1180 1181
	if err != nil {
		return err
	}
1182
	debugLocBytes, _ := godwarf.GetDebugSectionMacho(exe, "loc")
1183
	image.loclistInit(debugLocBytes, bi.Arch.PtrSize())
1184 1185

	wg.Add(2)
1186 1187
	go bi.parseDebugFrameMacho(image, exe, wg)
	go bi.loadDebugInfoMaps(image, debugLineBytes, wg, bi.setGStructOffsetMacho)
1188 1189 1190
	return nil
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
func (bi *BinaryInfo) setGStructOffsetMacho() {
	// In go1.11 it's 0x30, before 0x8a0, see:
	// https://github.com/golang/go/issues/23617
	// and go commit b3a854c733257c5249c3435ffcee194f8439676a
	producer := bi.Producer()
	if producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
		bi.gStructOffset = 0x30
		return
	}
	bi.gStructOffset = 0x8a0
}

1203
func (bi *BinaryInfo) parseDebugFrameMacho(image *Image, exe *macho.File, wg *sync.WaitGroup) {
1204 1205
	defer wg.Done()

1206 1207
	debugFrameBytes, err := godwarf.GetDebugSectionMacho(exe, "frame")
	if err != nil {
1208
		image.setLoadError("could not get __debug_frame section: %v", err)
1209
		return
1210
	}
1211 1212
	debugInfoBytes, err := godwarf.GetDebugSectionMacho(exe, "info")
	if err != nil {
1213
		image.setLoadError("could not get .debug_info section: %v", err)
1214
		return
1215
	}
1216

1217
	bi.frameEntries = bi.frameEntries.Append(frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), image.StaticBase))
1218
}
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

// Do not call this function directly it isn't able to deal correctly with package paths
func (bi *BinaryInfo) findType(name string) (godwarf.Type, error) {
	ref, found := bi.types[name]
	if !found {
		return nil, reader.TypeNotFoundErr
	}
	image := bi.Images[ref.imageIndex]
	return godwarf.ReadType(image.dwarf, ref.imageIndex, ref.offset, image.typeCache)
}

func (bi *BinaryInfo) findTypeExpr(expr ast.Expr) (godwarf.Type, error) {
	if lit, islit := expr.(*ast.BasicLit); islit && lit.Kind == token.STRING {
		// Allow users to specify type names verbatim as quoted
		// string. Useful as a catch-all workaround for cases where we don't
		// parse/serialize types correctly or can not resolve package paths.
		typn, _ := strconv.Unquote(lit.Value)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

		// Check if the type in question is an array type, in which case we try to
		// fake it.
		if len(typn) > 0 && typn[0] == '[' {
			closedBrace := strings.Index(typn, "]")
			if closedBrace > 1 {
				n, err := strconv.Atoi(typn[1:closedBrace])
				if err == nil {
					return bi.findArrayType(n, typn[closedBrace+1:])
				}
			}
		}
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		return bi.findType(typn)
	}
	bi.expandPackagesInType(expr)
	if snode, ok := expr.(*ast.StarExpr); ok {
		// Pointer types only appear in the dwarf informations when
		// a pointer to the type is used in the target program, here
		// we create a pointer type on the fly so that the user can
		// specify a pointer to any variable used in the target program
		ptyp, err := bi.findTypeExpr(snode.X)
		if err != nil {
			return nil, err
		}
		return pointerTo(ptyp, bi.Arch), nil
	}
	if anode, ok := expr.(*ast.ArrayType); ok {
1263
		// Array types (for example [N]byte) are only present in DWARF if they are
1264
		// used by the program, but it's convenient to make all of them available
1265 1266 1267 1268 1269
		// to the user for two reasons:
		// 1. to allow reading arbitrary memory byte-by-byte (by casting an
		//    address to an array of bytes).
		// 2. to read the contents of a channel's buffer (we create fake array
		//    types for them)
1270 1271 1272 1273

		alen, litlen := anode.Len.(*ast.BasicLit)
		if litlen && alen.Kind == token.INT {
			n, _ := strconv.Atoi(alen.Value)
1274
			return bi.findArrayType(n, exprToString(anode.Elt))
1275 1276 1277 1278 1279
		}
	}
	return bi.findType(exprToString(expr))
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
func (bi *BinaryInfo) findArrayType(n int, etyp string) (godwarf.Type, error) {
	switch etyp {
	case "byte", "uint8":
		etyp = "uint8"
		fallthrough
	default:
		btyp, err := bi.findType(etyp)
		if err != nil {
			return nil, err
		}
		return fakeArrayType(uint64(n), btyp), nil
	}
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
func complexType(typename string) bool {
	for _, ch := range typename {
		switch ch {
		case '*', '[', '<', '{', '(', ' ':
			return true
		}
	}
	return false
}

func (bi *BinaryInfo) registerTypeToPackageMap(entry *dwarf.Entry) {
	if entry.Tag != dwarf.TagTypedef && entry.Tag != dwarf.TagBaseType && entry.Tag != dwarf.TagClassType && entry.Tag != dwarf.TagStructType {
		return
	}

	typename, ok := entry.Val(dwarf.AttrName).(string)
	if !ok || complexType(typename) {
		return
	}

	dot := strings.LastIndex(typename, ".")
	if dot < 0 {
		return
	}
	path := typename[:dot]
	slash := strings.LastIndex(path, "/")
	if slash < 0 || slash+1 >= len(path) {
		return
	}
	name := path[slash+1:]
	bi.packageMap[name] = path
}

func (bi *BinaryInfo) loadDebugInfoMaps(image *Image, debugLineBytes []byte, wg *sync.WaitGroup, cont func()) {
	if wg != nil {
		defer wg.Done()
	}

1332
	if bi.types == nil {
1333
		bi.types = make(map[string]dwarfRef)
1334 1335
	}
	if bi.consts == nil {
1336
		bi.consts = make(map[dwarfRef]*constantType)
1337 1338
	}
	if bi.packageMap == nil {
1339 1340
		bi.packageMap = make(map[string]string)
	}
1341 1342 1343 1344
	if bi.inlinedCallLines == nil {
		bi.inlinedCallLines = make(map[fileLine][]uint64)
	}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	image.runtimeTypeToDIE = make(map[uint64]runtimeTypeDIE)

	ctxt := newLoadDebugInfoMapsContext(bi, image)

	reader := image.DwarfReader()

	for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
		if err != nil {
			image.setLoadError("error reading debug_info: %v", err)
			break
		}
		switch entry.Tag {
		case dwarf.TagCompileUnit:
			cu := &compileUnit{}
			cu.image = image
			cu.entry = entry
			cu.offset = entry.Offset
			if lang, _ := entry.Val(dwarf.AttrLanguage).(int64); lang == dwarfGoLanguage {
				cu.isgo = true
			}
			cu.name, _ = entry.Val(dwarf.AttrName).(string)
			compdir, _ := entry.Val(dwarf.AttrCompDir).(string)
			if compdir != "" {
				cu.name = filepath.Join(compdir, cu.name)
			}
			cu.ranges, _ = image.dwarf.Ranges(entry)
			for i := range cu.ranges {
				cu.ranges[i][0] += image.StaticBase
				cu.ranges[i][1] += image.StaticBase
			}
			if len(cu.ranges) >= 1 {
				cu.lowPC = cu.ranges[0][0]
			}
			lineInfoOffset, _ := entry.Val(dwarf.AttrStmtList).(int64)
			if lineInfoOffset >= 0 && lineInfoOffset < int64(len(debugLineBytes)) {
				var logfn func(string, ...interface{})
				if logflags.DebugLineErrors() {
					logger := logrus.New().WithFields(logrus.Fields{"layer": "dwarf-line"})
					logger.Logger.Level = logrus.DebugLevel
					logfn = func(fmt string, args ...interface{}) {
						logger.Printf(fmt, args)
					}
				}
				cu.lineInfo = line.Parse(compdir, bytes.NewBuffer(debugLineBytes[lineInfoOffset:]), logfn, image.StaticBase)
			}
			cu.producer, _ = entry.Val(dwarf.AttrProducer).(string)
			if cu.isgo && cu.producer != "" {
				semicolon := strings.Index(cu.producer, ";")
				if semicolon < 0 {
					cu.optimized = goversion.ProducerAfterOrEqual(cu.producer, 1, 10)
				} else {
					cu.optimized = !strings.Contains(cu.producer[semicolon:], "-N") || !strings.Contains(cu.producer[semicolon:], "-l")
					cu.producer = cu.producer[:semicolon]
				}
			}
			bi.compileUnits = append(bi.compileUnits, cu)
			if entry.Children {
				bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu)
			}

		case dwarf.TagPartialUnit:
			reader.SkipChildren()

		default:
			// ignore unknown tags
			reader.SkipChildren()
		}
	}

	sort.Sort(compileUnitsByOffset(bi.compileUnits))
	sort.Sort(functionsDebugInfoByEntry(bi.Functions))
	sort.Sort(packageVarsByAddr(bi.packageVars))

	bi.LookupFunc = make(map[string]*Function)
	for i := range bi.Functions {
		bi.LookupFunc[bi.Functions[i].Name] = &bi.Functions[i]
	}

	bi.Sources = []string{}
	for _, cu := range bi.compileUnits {
		if cu.lineInfo != nil {
			for _, fileEntry := range cu.lineInfo.FileNames {
				bi.Sources = append(bi.Sources, fileEntry.Path)
			}
		}
	}
	sort.Strings(bi.Sources)
	bi.Sources = uniq(bi.Sources)

	if cont != nil {
		cont()
	}
}

// loadDebugInfoMapsCompileUnit loads entry from a single compile unit.
func (bi *BinaryInfo) loadDebugInfoMapsCompileUnit(ctxt *loadDebugInfoMapsContext, image *Image, reader *reader.Reader, cu *compileUnit) {
	for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() {
		if err != nil {
			image.setLoadError("error reading debug_info: %v", err)
			return
		}
		switch entry.Tag {
		case 0:
			return
		case dwarf.TagImportedUnit:
			bi.loadDebugInfoMapsImportedUnit(entry, ctxt, image, cu)
			reader.SkipChildren()

		case dwarf.TagArrayType, dwarf.TagBaseType, dwarf.TagClassType, dwarf.TagStructType, dwarf.TagUnionType, dwarf.TagConstType, dwarf.TagVolatileType, dwarf.TagRestrictType, dwarf.TagEnumerationType, dwarf.TagPointerType, dwarf.TagSubroutineType, dwarf.TagTypedef, dwarf.TagUnspecifiedType:
			if name, ok := entry.Val(dwarf.AttrName).(string); ok {
				if !cu.isgo {
					name = "C." + name
				}
				if _, exists := bi.types[name]; !exists {
					bi.types[name] = dwarfRef{image.index, entry.Offset}
				}
			}
			if cu != nil && cu.isgo {
				bi.registerTypeToPackageMap(entry)
			}
			image.registerRuntimeTypeToDIE(entry, ctxt.ardr)
			reader.SkipChildren()

		case dwarf.TagVariable:
			if n, ok := entry.Val(dwarf.AttrName).(string); ok {
				var addr uint64
				if loc, ok := entry.Val(dwarf.AttrLocation).([]byte); ok {
					if len(loc) == bi.Arch.PtrSize()+1 && op.Opcode(loc[0]) == op.DW_OP_addr {
						addr = binary.LittleEndian.Uint64(loc[1:])
					}
				}
				if !cu.isgo {
					n = "C." + n
				}
				if _, known := ctxt.knownPackageVars[n]; !known {
					bi.packageVars = append(bi.packageVars, packageVar{n, cu, entry.Offset, addr + image.StaticBase})
				}
			}
			reader.SkipChildren()

		case dwarf.TagConstant:
			name, okName := entry.Val(dwarf.AttrName).(string)
			typ, okType := entry.Val(dwarf.AttrType).(dwarf.Offset)
			val, okVal := entry.Val(dwarf.AttrConstValue).(int64)
			if okName && okType && okVal {
				if !cu.isgo {
					name = "C." + name
				}
				ct := bi.consts[dwarfRef{image.index, typ}]
				if ct == nil {
					ct = &constantType{}
					bi.consts[dwarfRef{image.index, typ}] = ct
				}
				ct.values = append(ct.values, constantValue{name: name, fullName: name, value: val})
			}
			reader.SkipChildren()

		case dwarf.TagSubprogram:
			inlined := false
			if inval, ok := entry.Val(dwarf.AttrInline).(int64); ok {
				inlined = inval == 1
			}
1507 1508 1509 1510

			if inlined {
				bi.addAbstractSubprogram(entry, ctxt, reader, image, cu)
			} else {
1511 1512
				originOffset, hasAbstractOrigin := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
				if hasAbstractOrigin {
1513 1514 1515
					bi.addConcreteInlinedSubprogram(entry, originOffset, ctxt, reader, cu)
				} else {
					bi.addConcreteSubprogram(entry, ctxt, reader, cu)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
				}
			}
		}
	}
}

// loadDebugInfoMapsImportedUnit loads entries into cu from the partial unit
// referenced in a DW_TAG_imported_unit entry.
func (bi *BinaryInfo) loadDebugInfoMapsImportedUnit(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, image *Image, cu *compileUnit) {
	off, ok := entry.Val(dwarf.AttrImport).(dwarf.Offset)
	if !ok {
		return
	}
	reader := image.DwarfReader()
	reader.Seek(off)
	imentry, err := reader.Next()
	if err != nil {
		return
	}
	if imentry.Tag != dwarf.TagPartialUnit {
		return
	}
	bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu)
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
// addAbstractSubprogram adds the abstract entry for an inlined function.
func (bi *BinaryInfo) addAbstractSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, image *Image, cu *compileUnit) {
	name, ok := subprogramEntryName(entry, cu)
	if !ok {
		bi.logger.Errorf("Error reading debug_info: abstract subprogram without name at %#x", entry.Offset)
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

	fn := Function{
		Name:   name,
		offset: entry.Offset,
		cu:     cu,
	}

	if entry.Children {
1559
		bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
1560 1561 1562
	}

	bi.Functions = append(bi.Functions, fn)
1563
	ctxt.abstractOriginTable[entry.Offset] = len(bi.Functions) - 1
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
}

// addConcreteInlinedSubprogram adds the concrete entry of a subprogram that was also inlined.
func (bi *BinaryInfo) addConcreteInlinedSubprogram(entry *dwarf.Entry, originOffset dwarf.Offset, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
	lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
	if !ok {
		bi.logger.Errorf("Error reading debug_info: concrete inlined subprogram without address range at %#x", entry.Offset)
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

1577
	originIdx, ok := ctxt.abstractOriginTable[originOffset]
1578 1579 1580 1581 1582 1583 1584 1585
	if !ok {
		bi.logger.Errorf("Error reading debug_info: could not find abstract origin of concrete inlined subprogram at %#x (origin offset %#x)", entry.Offset, originOffset)
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

1586 1587 1588 1589
	fn := &bi.Functions[originIdx]
	fn.offset = entry.Offset
	fn.Entry = lowpc
	fn.End = highpc
1590 1591

	if entry.Children {
1592
		bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
1593 1594 1595 1596
	}
}

// addConcreteSubprogram adds a concrete subprogram (a normal subprogram
1597
// that doesn't have abstract or inlined entries)
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
func (bi *BinaryInfo) addConcreteSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
	lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
	if !ok {
		bi.logger.Errorf("Error reading debug_info: concrete subprogram without address range at %#x", entry.Offset)
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

	name, ok := subprogramEntryName(entry, cu)
	if !ok {
		bi.logger.Errorf("Error reading debug_info: concrete subprogram without name at %#x", entry.Offset)
		if entry.Children {
			reader.SkipChildren()
		}
		return
	}

	fn := Function{
		Name:   name,
		Entry:  lowpc,
		End:    highpc,
		offset: entry.Offset,
		cu:     cu,
	}
	bi.Functions = append(bi.Functions, fn)

	if entry.Children {
1627
		bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu)
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	}
}

func subprogramEntryName(entry *dwarf.Entry, cu *compileUnit) (string, bool) {
	name, ok := entry.Val(dwarf.AttrName).(string)
	if !ok {
		return "", false
	}
	if !cu.isgo {
		name = "C." + name
	}
	return name, true
}

func subprogramEntryRange(entry *dwarf.Entry, image *Image) (lowpc, highpc uint64, ok bool) {
	ok = false
	if ranges, _ := image.dwarf.Ranges(entry); len(ranges) >= 1 {
		ok = true
		lowpc = ranges[0][0] + image.StaticBase
		highpc = ranges[0][1] + image.StaticBase
	}
	return lowpc, highpc, ok
}

1652
func (bi *BinaryInfo) loadDebugInfoMapsInlinedCalls(ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	for {
		entry, err := reader.Next()
		if err != nil {
			cu.image.setLoadError("error reading debug_info: %v", err)
			return
		}
		switch entry.Tag {
		case 0:
			return
		case dwarf.TagInlinedSubroutine:
			originOffset, ok := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset)
			if !ok {
				bi.logger.Errorf("Error reading debug_info: inlined call without origin offset at %#x", entry.Offset)
				reader.SkipChildren()
				continue
			}

1670
			originIdx, ok := ctxt.abstractOriginTable[originOffset]
1671 1672 1673 1674 1675
			if !ok {
				bi.logger.Errorf("Error reading debug_info: could not find abstract origin (%#x) of inlined call at %#x", originOffset, entry.Offset)
				reader.SkipChildren()
				continue
			}
1676
			fn := &bi.Functions[originIdx]
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

			lowpc, highpc, ok := subprogramEntryRange(entry, cu.image)
			if !ok {
				bi.logger.Errorf("Error reading debug_info: inlined call without address range at %#x", entry.Offset)
				reader.SkipChildren()
				continue
			}

			callfileidx, ok1 := entry.Val(dwarf.AttrCallFile).(int64)
			callline, ok2 := entry.Val(dwarf.AttrCallLine).(int64)
			if !ok1 || !ok2 {
				bi.logger.Errorf("Error reading debug_info: inlined call without CallFile/CallLine at %#x", entry.Offset)
				reader.SkipChildren()
				continue
			}
1692 1693 1694 1695 1696
			if cu.lineInfo == nil {
				bi.logger.Errorf("Error reading debug_info: inlined call on a compilation unit without debug_line section at %#x", entry.Offset)
				reader.SkipChildren()
				continue
			}
1697 1698 1699 1700 1701 1702 1703
			if int(callfileidx-1) >= len(cu.lineInfo.FileNames) {
				bi.logger.Errorf("Error reading debug_info: CallFile (%d) of inlined call does not exist in compile unit file table at %#x", callfileidx, entry.Offset)
				reader.SkipChildren()
				continue
			}
			callfile := cu.lineInfo.FileNames[callfileidx-1].Path

1704 1705 1706 1707
			fn.InlinedCalls = append(fn.InlinedCalls, InlinedCall{
				cu:     cu,
				LowPC:  lowpc,
				HighPC: highpc,
1708
			})
1709 1710 1711

			fl := fileLine{callfile, int(callline)}
			bi.inlinedCallLines[fl] = append(bi.inlinedCallLines[fl], lowpc)
1712 1713 1714 1715 1716
		}
		reader.SkipChildren()
	}
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
func uniq(s []string) []string {
	if len(s) <= 0 {
		return s
	}
	src, dst := 1, 1
	for src < len(s) {
		if s[src] != s[dst-1] {
			s[dst] = s[src]
			dst++
		}
		src++
	}
	return s[:dst]
}

func (bi *BinaryInfo) expandPackagesInType(expr ast.Expr) {
	switch e := expr.(type) {
	case *ast.ArrayType:
		bi.expandPackagesInType(e.Elt)
	case *ast.ChanType:
		bi.expandPackagesInType(e.Value)
	case *ast.FuncType:
		for i := range e.Params.List {
			bi.expandPackagesInType(e.Params.List[i].Type)
		}
		if e.Results != nil {
			for i := range e.Results.List {
				bi.expandPackagesInType(e.Results.List[i].Type)
			}
		}
	case *ast.MapType:
		bi.expandPackagesInType(e.Key)
		bi.expandPackagesInType(e.Value)
	case *ast.ParenExpr:
		bi.expandPackagesInType(e.X)
	case *ast.SelectorExpr:
		switch x := e.X.(type) {
		case *ast.Ident:
			if path, ok := bi.packageMap[x.Name]; ok {
				x.Name = path
			}
		default:
			bi.expandPackagesInType(e.X)
		}
	case *ast.StarExpr:
		bi.expandPackagesInType(e.X)
	default:
		// nothing to do
	}
}

// Looks up symbol (either functions or global variables) at address addr.
// Used by disassembly formatter.
func (bi *BinaryInfo) symLookup(addr uint64) (string, uint64) {
	fn := bi.PCToFunc(addr)
	if fn != nil {
		if fn.Entry == addr {
			// only report the function name if it's the exact address because it's
			// easier to read the absolute address than function_name+offset.
			return fn.Name, fn.Entry
		}
		return "", 0
	}
	i := sort.Search(len(bi.packageVars), func(i int) bool {
		return bi.packageVars[i].addr >= addr
	})
	if i >= len(bi.packageVars) {
		return "", 0
	}
	if bi.packageVars[i].addr > addr {
		// report previous variable + offset if i-th variable starts after addr
		i--
	}
1790
	if i >= 0 && bi.packageVars[i].addr != 0 {
1791 1792 1793 1794
		return bi.packageVars[i].name, bi.packageVars[i].addr
	}
	return "", 0
}