base.h 15.9 KB
Newer Older
1 2 3 4
/**
 * \file dnn/include/megdnn/oprs/base.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14
 */
#pragma once

#include "megdnn/basic_types.h"
15
#include "megdnn/handle.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

#include "megdnn/internal/visibility_prologue.h"
namespace megdnn {

class Handle;

/**
 * \brief base class for all operators
 *
 * This is an helper class. Users should not use OperatorBase directly.
 * Operators should be created by handle->create_opr<>().
 *
 * Each operator must provides the following constexpr values:
 *
 *  * NR_INPUTS: number of input vars
 *  * NR_OUTPUTS: number of output vars
 *  * OPERATOR_TYPE: operator type as an enum
 *
 * If the operator has dynamic inputs or in_out param, the corresponding
 * NR_INPUTS is -1.
 *
 * For an operator whose NR_INPUTS >= 0 and NR_OUTPUTS >= 0, the operator must
 * also provide following methods:
 *
 *  * void exec(_megdnn_in inputs..., _megdnn_tensor_out outputs...,
 *              _megdnn_workspace workspace)
 *  * void deduce_layout(const TensorLayout& inputs...,
 *                       TensorLayout& outputs...)
 *  * size_t get_workspace_in_bytes(const TensorLayout &inputs...,
 *                                  const TensorLayout &outputs)
 */
class OperatorBase {
public:
    explicit OperatorBase(Handle* handle) : m_handle(handle) {}
    virtual ~OperatorBase();

    //! get the handle from which this operator is created
    Handle* handle() const { return m_handle; }

    //! whether this opr guarantees that its exec() is thread-safe
    virtual bool is_thread_safe() const { return false; }

    /*!
     * \brief set the tracker to be used with MegcoreAsyncErrorInfo
     *
     * Most operators do not have async errors so this function has a
     * default empty implementation.
     */
    virtual void set_error_tracker(void*) {}

private:
    Handle* m_handle;
};

namespace detail {
/**
 * \brief AlgoSelectionStrategy is the advance information for selecting
 * algo
 */
enum class AlgoSelectionStrategy {
    HEURISTIC = 0,  //!< heristic to select the algos
    FAST_RUN = 1,
    FULL_RUN = 2,
};

81 82 83 84 85 86 87 88 89 90
/**
 * \brief separate algo by datatype for Matmul and conv
 */
enum class AlgoDataType : uint32_t {
    FLOAT32 = 1 << 0,
    FLOAT16 = 1 << 1,
    QINT8X8X32 = 1 << 2,
    QUINT8X8X32 = 1 << 3,
    INT8X8X16 = 1 << 4,
    INT16X16X32 = 1 << 5,
91
    INT4X4X16 = 1 << 6,
92 93
};

94 95 96 97 98 99
/*!
 * \brief Abstract representation of an algorithm for implementing
 *      the operator
 */
class Algorithm {
public:
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    static constexpr uint32_t INVALID_ALGO_TYPE = static_cast<uint32_t>(-1);
    /**
     * \brief Algorithm information, we can get real algo from
     * AlgorithmInfo::Info::Desc
     */
    struct Info {
        struct Desc {
            //! backend of the algo belonging to
            Handle::HandleType handle_type;
            //! indicate the real algo implementation
            uint32_t type = INVALID_ALGO_TYPE;
            //! serialized param of the algo type
            std::string param;
            bool valid() const { return type != INVALID_ALGO_TYPE; }
            void reset() { type = INVALID_ALGO_TYPE; }

            bool operator==(const Desc& rhs) const {
                return handle_type == rhs.handle_type && type == rhs.type &&
                       param == rhs.param;
            }
        } desc;
        //! algorithm name
        std::string name;
        bool is_reproducible;
        bool valid() const { return desc.valid(); }
        void reset() { desc.reset(); }
        //! desc donate the algo
        bool operator==(const Info& rhs) const { return desc == rhs.desc; }
    };

    virtual ~Algorithm() = default;

132 133 134 135 136 137
    /**
     * \brief whether the execution result is
     *      reproducible across multiple runs.
     */
    virtual bool is_reproducible() const = 0;
    virtual const char* name() const = 0;
138 139 140
    //! serialized param
    virtual std::string param() const { return {}; }
    virtual uint32_t type() const = 0;
141

142
    Handle::HandleType handle_type() const { return m_handle_type; }
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    Info info() const {
        return {{handle_type(), type(), param()}, name(), is_reproducible()};
    }

    template <typename T>
    static void serialize_write_pod(const T& val, std::string& result) {
        result.append(reinterpret_cast<const char*>(&val), sizeof(T));
    }

    static void serialize_write_pod(const char* val, std::string& result) {
        result.append(val, strlen(val));
    }

    template <typename T>
    static T deserialize_read_pod(const std::string& data, size_t offset = 0) {
158 159 160 161 162 163 164 165 166
        T ret;
        //! A pointer to an object or incomplete type may be converted to a
        //! pointer to a different object or incomplete type. If the resulting
        //! pointer is not correctly aligned for the pointed-to type, the
        //! behavior is undefined.
        //!
        //! so here we should use memcpy instead of
        //!     *reinterpret_cast<const T*>(&data[offset]);
        memcpy(&ret, data.data() + offset, sizeof(T));
167 168
        return ret;
    }
169 170

protected:
171
    Handle::HandleType m_handle_type = Handle::HandleType::NAIVE;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
};

/*!
 * \brief define Algorithm and ExecutionPolicy for oprs that have
 *      multiple impl algos
 *
 * \tparam Opr the operator class
 * \tparam nargs number of arguments
 */
template <class Opr, int nargs>
class MultiAlgoOpr;

//! base def
template <class Opr>
class MultiAlgoOpr<Opr, -1> {
public:
188 189
    using AlgorithmInfo = detail::Algorithm::Info;
    using AlgorithmDesc = detail::Algorithm::Info::Desc;
190
    using Algorithm = detail::Algorithm;
191

192 193 194 195 196 197 198 199 200 201 202
    /*!
     * \brief get a string representation for current algorithm set;
     *
     * get_all_algorithms() may return different algorithms only if
     * algorithm set name differs. This is used for checking cache
     * validity.
     */
    virtual const char* get_algorithm_set_name() const = 0;

    //! policy for executing the operator
    struct ExecutionPolicy {
203 204
        //! INVALID_ALGO_TYPE algo_type means using heuristic
        AlgorithmInfo algo;
205 206 207 208 209 210 211 212
    };

    ExecutionPolicy& execution_policy() { return m_execution_policy; }

    const ExecutionPolicy& execution_policy() const {
        return m_execution_policy;
    }

213 214
    virtual Algorithm* get_algorithm_from_desc(const AlgorithmDesc&) = 0;

215 216 217 218 219 220 221 222 223 224 225 226
protected:
    ~MultiAlgoOpr() = default;

private:
    ExecutionPolicy m_execution_policy;
};

//! specialize for nargs == 3
template <class Opr>
class MultiAlgoOpr<Opr, 3> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    using AlgorithmInfo = detail::Algorithm::Info;

    //! get all possible algorithm decriptions for the specified layouts
    std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
                                                       const TensorLayout& p1,
                                                       const TensorLayout& p2) {
        std::vector<AlgorithmInfo> ret;
        for (auto&& algo : get_all_algorithms(p0, p1, p2)) {
            ret.emplace_back(algo->info());
        }
        return ret;
    }

    /**
     * \brief Returns the best algorithm information which indicate the
     * algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    AlgorithmInfo get_algorithm_info_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) {
        return get_algorithm_heuristic(p0, p1, p2, workspace_limit_in_bytes,
                                       reproducible)
                ->info();
    }

protected:
    ~MultiAlgoOpr() = default;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;
};

//! specializae for nargs == 4
template <class Opr>
class MultiAlgoOpr<Opr, 4> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    using AlgorithmInfo = detail::Algorithm::Info;

    //! get all possible algorithm decriptions for the specified layouts
    std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
                                                       const TensorLayout& p1,
                                                       const TensorLayout& p2,
                                                       const TensorLayout& p3) {
        std::vector<AlgorithmInfo> ret;
        for (auto&& algo : get_all_algorithms(p0, p1, p2, p3)) {
            ret.emplace_back(algo->info());
        }
        return ret;
    }

    /**
     * \brief Returns the best algorithm information which indicate the
     * algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    AlgorithmInfo get_algorithm_info_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) {
        return get_algorithm_heuristic(p0, p1, p2, p3, workspace_limit_in_bytes,
                                       reproducible)
                ->info();
    }

protected:
    ~MultiAlgoOpr() = default;
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;
};

//! specializae for nargs == 5
template <class Opr>
class MultiAlgoOpr<Opr, 5> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    using AlgorithmInfo = detail::Algorithm::Info;

    //! get all possible algorithm decriptions for the specified layouts
    std::vector<AlgorithmInfo> get_all_algorithms_info(const TensorLayout& p0,
                                                       const TensorLayout& p1,
                                                       const TensorLayout& p2,
                                                       const TensorLayout& p3,
                                                       const TensorLayout& p4) {
        std::vector<AlgorithmInfo> ret;
        for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4)) {
            ret.emplace_back(algo->info());
        }
        return ret;
    }

    /**
     * \brief Returns the best algorithm information which indicate the
     * algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    AlgorithmInfo get_algorithm_info_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) {
        return get_algorithm_heuristic(p0, p1, p2, p3, p4,
                                       workspace_limit_in_bytes, reproducible)
                ->info();
    }

protected:
    ~MultiAlgoOpr() = default;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;
};

//! specializae for nargs == 8
template <class Opr>
class MultiAlgoOpr<Opr, 8> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    using AlgorithmInfo = detail::Algorithm::Info;

    //! get all possible algorithm decriptions for the specified layouts
    std::vector<AlgorithmInfo> get_all_algorithms_info(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4, const TensorLayout& p5,
            const TensorLayout& p6, const TensorLayout& p7) {
        std::vector<AlgorithmInfo> ret;
        for (auto&& algo : get_all_algorithms(p0, p1, p2, p3, p4, p5, p6, p7)) {
            ret.emplace_back(algo->info());
        }
        return ret;
    }

    /**
     * \brief Returns the best algorithm information which indicate the
     * algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     */
    AlgorithmInfo get_algorithm_info_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4, const TensorLayout& p5,
            const TensorLayout& p6, const TensorLayout& p7,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) {
        return get_algorithm_heuristic(p0, p1, p2, p3, p4, p5, p6, p7,
                                       workspace_limit_in_bytes, reproducible)
                ->info();
    }

protected:
    ~MultiAlgoOpr() = default;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4, const TensorLayout& p5,
            const TensorLayout& p6, const TensorLayout& p7) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4, const TensorLayout& p5,
            const TensorLayout& p6, const TensorLayout& p7,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;
};
}  // namespace detail
}  // namespace megdnn

#include "megdnn/internal/visibility_epilogue.h"

// vim: syntax=cpp.doxygen