base.h 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file dnn/include/megdnn/oprs/base.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#pragma once

#include "megdnn/basic_types.h"
14
#include "megdnn/handle.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

#include "megdnn/internal/visibility_prologue.h"
namespace megdnn {

class Handle;

/**
 * \brief base class for all operators
 *
 * This is an helper class. Users should not use OperatorBase directly.
 * Operators should be created by handle->create_opr<>().
 *
 * Each operator must provides the following constexpr values:
 *
 *  * NR_INPUTS: number of input vars
 *  * NR_OUTPUTS: number of output vars
 *  * OPERATOR_TYPE: operator type as an enum
 *
 * If the operator has dynamic inputs or in_out param, the corresponding
 * NR_INPUTS is -1.
 *
 * For an operator whose NR_INPUTS >= 0 and NR_OUTPUTS >= 0, the operator must
 * also provide following methods:
 *
 *  * void exec(_megdnn_in inputs..., _megdnn_tensor_out outputs...,
 *              _megdnn_workspace workspace)
 *  * void deduce_layout(const TensorLayout& inputs...,
 *                       TensorLayout& outputs...)
 *  * size_t get_workspace_in_bytes(const TensorLayout &inputs...,
 *                                  const TensorLayout &outputs)
 */
class OperatorBase {
public:
    explicit OperatorBase(Handle* handle) : m_handle(handle) {}
    virtual ~OperatorBase();

    //! get the handle from which this operator is created
    Handle* handle() const { return m_handle; }

    //! whether this opr guarantees that its exec() is thread-safe
    virtual bool is_thread_safe() const { return false; }

    /*!
     * \brief set the tracker to be used with MegcoreAsyncErrorInfo
     *
     * Most operators do not have async errors so this function has a
     * default empty implementation.
     */
    virtual void set_error_tracker(void*) {}

private:
    Handle* m_handle;
};

namespace detail {
/**
 * \brief AlgoSelectionStrategy is the advance information for selecting
 * algo
 */
enum class AlgoSelectionStrategy {
    HEURISTIC = 0,  //!< heristic to select the algos
    FAST_RUN = 1,
    FULL_RUN = 2,
};

80 81 82 83 84 85 86 87 88 89 90 91
/**
 * \brief separate algo by datatype for Matmul and conv
 */
enum class AlgoDataType : uint32_t {
    FLOAT32 = 1 << 0,
    FLOAT16 = 1 << 1,
    QINT8X8X32 = 1 << 2,
    QUINT8X8X32 = 1 << 3,
    INT8X8X16 = 1 << 4,
    INT16X16X32 = 1 << 5,
};

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*!
 * \brief Abstract representation of an algorithm for implementing
 *      the operator
 *
 * All pointers to Algorithm should be allocated globally and usable
 * across multiple megdnn handles, and they should not be freed by
 * the caller.
 */
class Algorithm {
public:
    /**
     * \brief whether the execution result is
     *      reproducible across multiple runs.
     */
    virtual bool is_reproducible() const = 0;
    virtual const char* name() const = 0;

109
    Handle::HandleType handle_type() const { return m_handle_type; }
110 111 112

protected:
    ~Algorithm() = default;
113
    Handle::HandleType m_handle_type = Handle::HandleType::NAIVE;
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
};

/*!
 * \brief define Algorithm and ExecutionPolicy for oprs that have
 *      multiple impl algos
 *
 * \tparam Opr the operator class
 * \tparam nargs number of arguments
 */
template <class Opr, int nargs>
class MultiAlgoOpr;

//! base def
template <class Opr>
class MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;
    /*!
     * \brief get a string representation for current algorithm set;
     *
     * get_all_algorithms() may return different algorithms only if
     * algorithm set name differs. This is used for checking cache
     * validity.
     */
    virtual const char* get_algorithm_set_name() const = 0;

    //! policy for executing the operator
    struct ExecutionPolicy {
        //! nullptr means using heuristic
        Algorithm* algorithm = nullptr;
    };

    ExecutionPolicy& execution_policy() { return m_execution_policy; }

    const ExecutionPolicy& execution_policy() const {
        return m_execution_policy;
    }

protected:
    ~MultiAlgoOpr() = default;

private:
    ExecutionPolicy m_execution_policy;
};

//! specialize for nargs == 3
template <class Opr>
class MultiAlgoOpr<Opr, 3> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;

protected:
    ~MultiAlgoOpr() = default;
};

//! specializae for nargs == 4
template <class Opr>
class MultiAlgoOpr<Opr, 4> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;

protected:
    ~MultiAlgoOpr() = default;
};

//! specializae for nargs == 5
template <class Opr>
class MultiAlgoOpr<Opr, 5> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;

protected:
    ~MultiAlgoOpr() = default;
};

//! specializae for nargs == 8
template <class Opr>
class MultiAlgoOpr<Opr, 8> : public MultiAlgoOpr<Opr, -1> {
public:
    using Algorithm = detail::Algorithm;

    //! get all possible algorithms for the specified layouts
    virtual std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4, const TensorLayout& p5,
            const TensorLayout& p6, const TensorLayout& p7) = 0;

    /**
     * \brief Returns the best algorithm by heuristic.
     *
     * The selected algorithm should not use workspace more than
     * \p workspace_limit_in_bytes.
     */
    virtual Algorithm* get_algorithm_heuristic(
            const TensorLayout& p0, const TensorLayout& p1,
            const TensorLayout& p2, const TensorLayout& p3,
            const TensorLayout& p4, const TensorLayout& p5,
            const TensorLayout& p6, const TensorLayout& p7,
            size_t workspace_limit_in_bytes =
                    std::numeric_limits<size_t>::max(),
            bool reproducible = false) = 0;

protected:
    ~MultiAlgoOpr() = default;
};
}  // namespace detail
}  // namespace megdnn

#include "megdnn/internal/visibility_epilogue.h"

// vim: syntax=cpp.doxygen