提交 7ee2449a 编写于 作者: H Haojun Liao

Merge branch '3.0' into feature/3_liaohj

......@@ -218,12 +218,12 @@ def pre_test_win(){
if (env.CHANGE_URL =~ /\/TDengine\//) {
bat '''
cd %WIN_INTERNAL_ROOT%
git pull
git pull origin ''' + env.CHANGE_TARGET + '''
'''
bat '''
cd %WIN_COMMUNITY_ROOT%
git remote prune origin
git pull
git pull origin ''' + env.CHANGE_TARGET + '''
'''
bat '''
cd %WIN_COMMUNITY_ROOT%
......@@ -236,7 +236,7 @@ def pre_test_win(){
} else if (env.CHANGE_URL =~ /\/TDinternal\//) {
bat '''
cd %WIN_INTERNAL_ROOT%
git pull
git pull origin ''' + env.CHANGE_TARGET + '''
'''
bat '''
cd %WIN_INTERNAL_ROOT%
......
......@@ -15,24 +15,26 @@
[![Coverage Status](https://coveralls.io/repos/github/taosdata/TDengine/badge.svg?branch=develop)](https://coveralls.io/github/taosdata/TDengine?branch=develop)
[![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/4201/badge)](https://bestpractices.coreinfrastructure.org/projects/4201)
English | [简体中文](README-CN.md) | We are hiring, check [here](https://tdengine.com/careers)
English | [简体中文](README-CN.md) | [Learn more about TSDB](https://tdengine.com/tsdb/)
# What is TDengine?
TDengine is an open source, high-performance, cloud native [time-series database](https://tdengine.com/tsdb/what-is-a-time-series-database/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. TDengine differentiates itself from other time-seires databases with the following advantages:
TDengine is an open source, high-performance, cloud native [time-series database](https://tdengine.com/tsdb/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. TDengine differentiates itself from other time-seires databases with the following advantages:
- **[High-Performance](https://tdengine.com/tdengine/high-performance-time-series-database/)**: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
- **[High Performance](https://tdengine.com/tdengine/high-performance-time-series-database/)**: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
- **[Simplified Solution](https://tdengine.com/tdengine/simplified-time-series-data-solution/)**: Through built-in caching, stream processing and data subscription features, TDengine provides a simplified solution for time-series data processing. It reduces system design complexity and operation costs significantly.
- **[Cloud Native](https://tdengine.com/tdengine/cloud-native-time-series-database/)**: Through native distributed design, sharding and partitioning, separation of compute and storage, RAFT, support for kubernetes deployment and full observability, TDengine is a cloud native Time-Series Database and can be deployed on public, private or hybrid clouds.
- **[Ease of Use](https://docs.tdengine.com/get-started/docker/)**: For administrators, TDengine significantly reduces the effort to deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
- **[Ease of Use](https://tdengine.com/tdengine/easy-time-series-data-platform/)**: For administrators, TDengine significantly reduces the effort to deploy and maintain. For developers, it provides a simple interface, simplified solution and seamless integrations for third party tools. For data users, it gives easy data access.
- **[Easy Data Analytics](https://tdengine.com/tdengine/time-series-data-analytics-made-easy/)**: Through super tables, storage and compute separation, data partitioning by time interval, pre-computation and other means, TDengine makes it easy to explore, format, and get access to data in a highly efficient way.
- **[Open Source](https://tdengine.com/tdengine/open-source-time-series-database/)**: TDengine’s core modules, including cluster feature, are all available under open source licenses. It has gathered 18.8k stars on GitHub. There is an active developer community, and over 139k running instances worldwide.
For a full list of TDengine competitive advantages, please [check here](https://tdengine.com/tdengine/)
# Documentation
For user manual, system design and architecture, please refer to [TDengine Documentation](https://docs.tdengine.com) ([TDengine 文档](https://docs.taosdata.com))
......@@ -230,9 +232,9 @@ After building successfully, TDengine can be installed by
sudo make install
```
Users can find more information about directories installed on the system in the [directory and files](https://docs.taosdata.com/reference/directory/) section.
Users can find more information about directories installed on the system in the [directory and files](https://docs.tdengine.com/reference/directory/) section.
Installing from source code will also configure service management for TDengine.Users can also choose to [install from packages](https://docs.taosdata.com/get-started/package/) for it.
Installing from source code will also configure service management for TDengine.Users can also choose to [install from packages](https://docs.tdengine.com/get-started/package/) for it.
To start the service after installation, in a terminal, use:
......@@ -319,6 +321,7 @@ TDengine provides abundant developing tools for users to develop on TDengine. Fo
Please follow the [contribution guidelines](CONTRIBUTING.md) to contribute to the project.
# Join TDengine WeChat Group
# Join TDengine User Community
Add WeChat “tdengine” to join the group,you can communicate with other users.
- Join [TDengine Discord Channel](https://discord.com/invite/VZdSuUg4pS?utm_id=discord)
- Join wechat group by adding WeChat “tdengine”
......@@ -2,7 +2,7 @@
IF (DEFINED VERNUMBER)
SET(TD_VER_NUMBER ${VERNUMBER})
ELSE ()
SET(TD_VER_NUMBER "3.0.1.0")
SET(TD_VER_NUMBER "3.0.1.2")
ENDIF ()
IF (DEFINED VERCOMPATIBLE)
......
......@@ -2,7 +2,7 @@
# taosadapter
ExternalProject_Add(taosadapter
GIT_REPOSITORY https://github.com/taosdata/taosadapter.git
GIT_TAG 71e7ccf
GIT_TAG 05fb2ff
SOURCE_DIR "${TD_SOURCE_DIR}/tools/taosadapter"
BINARY_DIR ""
#BUILD_IN_SOURCE TRUE
......
......@@ -2,7 +2,7 @@
# taos-tools
ExternalProject_Add(taos-tools
GIT_REPOSITORY https://github.com/taosdata/taos-tools.git
GIT_TAG e7270c9
GIT_TAG 8207c74
SOURCE_DIR "${TD_SOURCE_DIR}/tools/taos-tools"
BINARY_DIR ""
#BUILD_IN_SOURCE TRUE
......
......@@ -2,7 +2,7 @@
# taosws-rs
ExternalProject_Add(taosws-rs
GIT_REPOSITORY https://github.com/taosdata/taos-connector-rust.git
GIT_TAG e771403
GIT_TAG 1bdfca3
SOURCE_DIR "${TD_SOURCE_DIR}/tools/taosws-rs"
BINARY_DIR ""
#BUILD_IN_SOURCE TRUE
......
......@@ -4,7 +4,7 @@ sidebar_label: Documentation Home
slug: /
---
TDengine is an [open-source](https://tdengine.com/tdengine/open-source-time-series-database/), [cloud-native](https://tdengine.com/tdengine/cloud-native-time-series-database/) time-series database optimized for the Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. This document is the TDengine user manual. It introduces the basic, as well as novel concepts, in TDengine, and also talks in detail about installation, features, SQL, APIs, operation, maintenance, kernel design, and other topics. It’s written mainly for architects, developers, and system administrators.
TDengine is an [open-source](https://tdengine.com/tdengine/open-source-time-series-database/), [cloud-native](https://tdengine.com/tdengine/cloud-native-time-series-database/) [time-series database](https://tdengine.com/tsdb/) optimized for the Internet of Things (IoT), Connected Cars, and Industrial IoT. It enables efficient, real-time data ingestion, processing, and monitoring of TB and even PB scale data per day, generated by billions of sensors and data collectors. This document is the TDengine user manual. It introduces the basic, as well as novel concepts, in TDengine, and also talks in detail about installation, features, SQL, APIs, operation, maintenance, kernel design, and other topics. It’s written mainly for architects, developers, and system administrators.
To get an overview of TDengine, such as a feature list, benchmarks, and competitive advantages, please browse through the [Introduction](./intro) section.
......@@ -22,6 +22,8 @@ If you want to know more about TDengine tools, the REST API, and connectors for
If you are very interested in the internal design of TDengine, please read the chapter [Inside TDengine](./tdinternal), which introduces the cluster design, data partitioning, sharding, writing, and reading processes in detail. If you want to study TDengine code or even contribute code, please read this chapter carefully.
To get more general introduction about time series database, please read through [a series of articles](https://tdengine.com/tsdb/). To lean more competitive advantages about TDengine, please read through [a series of blogs](https://tdengine.com/tdengine/).
TDengine is an open-source database, and we would love for you to be a part of TDengine. If you find any errors in the documentation or see parts where more clarity or elaboration is needed, please click "Edit this page" at the bottom of each page to edit it directly.
Together, we make a difference!
......@@ -3,7 +3,7 @@ title: Introduction
toc_max_heading_level: 2
---
TDengine is an open source, high-performance, cloud native [time-series database](https://tdengine.com/tsdb/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides [caching](../develop/cache), [stream processing](../develop/stream), [data subscription](../develop/tmq) and other functionalities to reduce the system complexity and cost of development and operation.
TDengine is an [open source](https://tdengine.com/tdengine/open-source-time-series-database/), [high-performance](https://tdengine.com/tdengine/high-performance-time-series-database/), [cloud native](https://tdengine.com/tdengine/cloud-native-time-series-database/) [time-series database](https://tdengine.com/tsdb/) optimized for Internet of Things (IoT), Connected Cars, and Industrial IoT. Its code, including its cluster feature is open source under GNU AGPL v3.0. Besides the database engine, it provides [caching](../develop/cache), [stream processing](../develop/stream), [data subscription](../develop/tmq) and other functionalities to reduce the system complexity and cost of development and operation.
This section introduces the major features, competitive advantages, typical use-cases and benchmarks to help you get a high level overview of TDengine.
......@@ -43,7 +43,7 @@ For more details on features, please read through the entire documentation.
## Competitive Advantages
By making full use of [characteristics of time series data](https://tdengine.com/tsdb/characteristics-of-time-series-data/), TDengine differentiates itself from other time series databases, with the following advantages.
By making full use of [characteristics of time series data](https://tdengine.com/tsdb/characteristics-of-time-series-data/), TDengine differentiates itself from other [time series databases](https://tdengine.com/tsdb), with the following advantages.
- **[High-Performance](https://tdengine.com/tdengine/high-performance-time-series-database/)**: TDengine is the only time-series database to solve the high cardinality issue to support billions of data collection points while out performing other time-series databases for data ingestion, querying and data compression.
......@@ -127,3 +127,8 @@ As a high-performance, scalable and SQL supported time-series database, TDengine
- [TDengine vs OpenTSDB](https://tdengine.com/2019/09/12/710.html)
- [TDengine vs Cassandra](https://tdengine.com/2019/09/12/708.html)
- [TDengine vs InfluxDB](https://tdengine.com/2019/09/12/706.html)
## More readings
- [Introduction to Time-Series Database](https://tdengine.com/tsdb/)
- [Introduction to TDengine competitive advantages](https://tdengine.com/tdengine/)
......@@ -3,7 +3,11 @@ sidebar_label: Docker
title: Quick Install on Docker
---
This document describes how to install TDengine in a Docker container and perform queries and inserts. To get started with TDengine in a non-containerized environment, see [Quick Install](../../get-started/package). If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
This document describes how to install TDengine in a Docker container and perform queries and inserts.
- To get started with TDengine in a non-containerized environment, see [Quick Install from Package](../../get-started/package).
- For a fully managed solution, see the [TDengine Cloud documentation](/cloud/).
- If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
## Run TDengine
......
......@@ -7,7 +7,11 @@ import Tabs from "@theme/Tabs";
import TabItem from "@theme/TabItem";
import PkgListV3 from "/components/PkgListV3";
For information about installing TDengine on Docker, see [Quick Install on Docker](../../get-started/docker). If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
This document describes how to install TDengine on Linux and Windows and perform queries and inserts.
- To get started with TDengine on Docker, see [Quick Install on Docker](../../get-started/docker).
- For a fully managed solution, see the [TDengine Cloud documentation](/cloud/).
- If you want to view the source code, build TDengine yourself, or contribute to the project, see the [TDengine GitHub repository](https://github.com/taosdata/TDengine).
The full package of TDengine includes the TDengine Server (`taosd`), TDengine Client (`taosc`), taosAdapter for connecting with third-party systems and providing a RESTful interface, a command-line interface (CLI, taos), and some tools. Note that taosAdapter supports Linux only. In addition to connectors for multiple languages, TDengine also provides a [REST API](../../reference/rest-api) through [taosAdapter](../../reference/taosadapter).
......@@ -111,7 +115,7 @@ Note: TDengine only supports Windows Server 2016/2019 and Windows 10/11 on the W
</Tabs>
:::info
For information about TDengine releases, see [Release History](../../releases).
For information about TDengine releases, see [Release History](../../releases/tdengine).
:::
:::note
......
......@@ -3,9 +3,9 @@ title: Get Started
description: This article describes how to install TDengine and test its performance.
---
The full package of TDengine includes the TDengine Server (`taosd`), TDengine Client (`taosc`), taosAdapter for connecting with third-party systems and providing a RESTful interface, a command-line interface, and some tools. In addition to connectors for multiple languages, TDengine also provides a [RESTful interface](/reference/rest-api) through [taosAdapter](/reference/taosadapter).
You can install and run TDengine on Linux and Windows machines as well as Docker containers. You can also deploy TDengine as a managed service with TDengine Cloud.
You can install and run TDengine on Linux and Windows machines as well as Docker containers.
The full package of TDengine includes the TDengine Server (`taosd`), TDengine Client (`taosc`), taosAdapter for connecting with third-party systems and providing a RESTful interface, a command-line interface, and some tools. In addition to connectors for multiple languages, TDengine also provides a [RESTful interface](/reference/rest-api) through [taosAdapter](/reference/taosadapter).
```mdx-code-block
import DocCardList from '@theme/DocCardList';
......
```csharp title="Native Connection"
{{#include docs/examples/csharp/ConnectExample.cs}}
{{#include docs/examples/csharp/connect/Program.cs}}
```
:::info
......
```csharp
{{#include docs/examples/csharp/InfluxDBLineExample.cs}}
{{#include docs/examples/csharp/influxdbLine/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/OptsJsonExample.cs}}
{{#include docs/examples/csharp/optsJSON/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/OptsTelnetExample.cs}}
{{#include docs/examples/csharp/optsTelnet/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/SQLInsertExample.cs}}
{{#include docs/examples/csharp/sqlInsert/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/StmtInsertExample.cs}}
{{#include docs/examples/csharp/stmtInsert/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/QueryExample.cs}}
{{#include docs/examples/csharp/query/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/AsyncQueryExample.cs}}
{{#include docs/examples/csharp/asyncQuery/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/SubscribeDemo.cs}}
{{#include docs/examples/csharp/subscribe/Program.cs}}
```
\ No newline at end of file
此差异已折叠。
......@@ -16,6 +16,8 @@ INSERT INTO
[(field1_name, ...)]
VALUES (field1_value, ...) [(field1_value2, ...) ...] | FILE csv_file_path
...];
INSERT INTO tb_name [(field1_name, ...)] subquery
```
**Timestamps**
......@@ -37,7 +39,7 @@ INSERT INTO
4. The FILE clause inserts tags or data from a comma-separates values (CSV) file. Do not include headers in your CSV files.
5. A single INSERT statement can write data to multiple tables.
5. A single `INSERT ... VALUES` statement and `INSERT ... FILE` statement can write data to multiple tables.
6. The INSERT statement is fully parsed before being executed, so that if any element of the statement fails, the entire statement will fail. For example, the following statement will not create a table because the latter part of the statement is invalid:
......@@ -47,6 +49,8 @@ INSERT INTO
7. However, an INSERT statement that writes data to multiple subtables can succeed for some tables and fail for others. This situation is caused because vnodes perform write operations independently of each other. One vnode failing to write data does not affect the ability of other vnodes to write successfully.
8. Data from TDengine can be inserted into a specified table using the `INSERT ... subquery` statement. Arbitrary query statements are supported. This syntax can only be used for subtables and normal tables, and does not support automatic table creation.
## Insert a Record
Single row or multiple rows specified with VALUES can be inserted into a specific table. A single row is inserted using the below statement.
......
......@@ -66,9 +66,9 @@ order_expr:
A query can be performed on some or all columns. Data and tag columns can all be included in the SELECT list.
## Wildcards
### Wildcards
You can use an asterisk (\*) as a wildcard character to indicate all columns. For standard tables, the asterisk indicates only data columns. For supertables and subtables, tag columns are also included.
You can use an asterisk (\*) as a wildcard character to indicate all columns. For normal tables or sub-tables, the asterisk indicates only data columns. For supertables, tag columns are also included when using asterisk (\*).
```sql
SELECT * FROM d1001;
......@@ -136,6 +136,8 @@ taos> SELECT ts, ts AS primary_key_ts FROM d1001;
### Pseudocolumns
**Pseudocolumn:** A pseudo-column behaves like a table column but is not actually stored in the table. You can select from pseudo-columns, but you cannot insert, update, or delete their values. A pseudo-column is also similar to a function without arguments. This section describes these pseudo-columns:
**TBNAME**
The TBNAME pseudocolumn in a supertable contains the names of subtables within the supertable.
......@@ -348,19 +350,15 @@ SELECT ... FROM (SELECT ... FROM ...) ...;
:::info
- Only one layer of nesting is allowed, that means no sub query is allowed within a sub query
- The result set returned by the inner query will be used as a "virtual table" by the outer query. The "virtual table" can be renamed using `AS` keyword for easy reference in the outer query.
- Sub query is not allowed in continuous query.
- The result of a nested query is returned as a virtual table used by the outer query. It's recommended to give an alias to this table for the convenience of using it in the outer query.
- JOIN operation is allowed between tables/STables inside both inner and outer queries. Join operation can be performed on the result set of the inner query.
- UNION operation is not allowed in either inner query or outer query.
- The functions that can be used in the inner query are the same as those that can be used in a non-nested query.
- The features that can be used in the inner query are the same as those that can be used in a non-nested query.
- `ORDER BY` inside the inner query is unnecessary and will slow down the query performance significantly. It is best to avoid the use of `ORDER BY` inside the inner query.
- Compared to the non-nested query, the functionality that can be used in the outer query has the following restrictions:
- Functions
- If the result set returned by the inner query doesn't contain timestamp column, then functions relying on timestamp can't be used in the outer query, like `TOP`, `BOTTOM`, `FIRST`, `LAST`, `DIFF`.
- Functions that need to scan the data twice can't be used in the outer query, like `STDDEV`, `PERCENTILE`.
- `IN` operator is not allowed in the outer query but can be used in the inner query.
- `GROUP BY` is not supported in the outer query.
- If the result set returned by the inner query doesn't contain timestamp column, then functions relying on timestamp can't be used in the outer query, like INTERP,DERIVATIVE, IRATE, LAST_ROW, FIRST, LAST, TWA, STATEDURATION, TAIL, UNIQUE.
- If the result set returned by the inner query are not sorted in order by timestamp, then functions relying on data ordered by timestamp can't be used in the outer query, like LEASTSQUARES, ELAPSED, INTERP, DERIVATIVE, IRATE, TWA, DIFF, STATECOUNT, STATEDURATION, CSUM, MAVG, TAIL, UNIQUE.
- Functions that need to scan the data twice can't be used in the outer query, like PERCENTILE.
:::
......
......@@ -5,11 +5,11 @@ title: Time-Series Extensions
As a purpose-built database for storing and processing time-series data, TDengine provides time-series-specific extensions to standard SQL.
These extensions include tag-partitioned queries and windowed queries.
These extensions include partitioned queries and windowed queries.
## Tag-Partitioned Queries
## Partitioned Queries
When you query a supertable, you may need to partition the supertable by tag and perform additional operations on a specific partition. In this case, you can use the following SQL clause:
When you query a supertable, you may need to partition the supertable by some dimensions and perform additional operations on a specific partition. In this case, you can use the following SQL clause:
```sql
PARTITION BY part_list
......@@ -17,22 +17,24 @@ PARTITION BY part_list
part_list can be any scalar expression, such as a column, constant, scalar function, or a combination of the preceding items.
A PARTITION BY clause with a tag is processed as follows:
A PARTITION BY clause is processed as follows:
- The PARTITION BY clause must occur after the WHERE clause and cannot be used with a JOIN clause.
- The PARTITION BY clause partitions the super table by the specified tag group, and the specified calculation is performed on each partition. The calculation performed is determined by the rest of the statement - a window clause, GROUP BY clause, or SELECT clause.
- You can use PARTITION BY together with a window clause or GROUP BY clause. In this case, the window or GROUP BY clause takes effect on every partition. For example, the following statement partitions the table by the location tag, performs downsampling over a 10 minute window, and returns the maximum value:
- The PARTITION BY clause must occur after the WHERE clause
- The PARTITION BY caluse partitions the data according to the specified dimentions, then perform computation on each partition. The performed computation is determined by the rest of the statement - a window clause, GROUP BY clause, or SELECT clause.
- The PARTITION BY clause can be used together with a window clause or GROUP BY clause. In this case, the window or GROUP BY clause takes effect on every partition. For example, the following statement partitions the table by the location tag, performs downsampling over a 10 minute window, and returns the maximum value:
```sql
select max(current) from meters partition by location interval(10m)
```
The most common usage of PARTITION BY is partitioning the data in subtables by tags then perform computation when querying data in a supertable. More specifically, `PARTITION BY TBNAME` partitions the data of each subtable into a single timeline, and this method facilitates the statistical analysis in many use cases of processing timeseries data.
## Windowed Queries
Aggregation by time window is supported in TDengine. For example, in the case where temperature sensors report the temperature every seconds, the average temperature for every 10 minutes can be retrieved by performing a query with a time window. Window related clauses are used to divide the data set to be queried into subsets and then aggregation is performed across the subsets. There are three kinds of windows: time window, status window, and session window. There are two kinds of time windows: sliding window and flip time/tumbling window. The query syntax is as follows:
```sql
SELECT function_list FROM tb_name
SELECT select_list FROM tb_name
[WHERE where_condition]
[SESSION(ts_col, tol_val)]
[STATE_WINDOW(col)]
......@@ -42,15 +44,9 @@ SELECT function_list FROM tb_name
The following restrictions apply:
### Restricted Functions
- Aggregate functions and select functions can be used in `function_list`, with each function having only one output. For example COUNT, AVG, SUM, STDDEV, LEASTSQUARES, PERCENTILE, MIN, MAX, FIRST, LAST. Functions having multiple outputs, such as DIFF or arithmetic operations can't be used.
- `LAST_ROW` can't be used together with window aggregate.
- Scalar functions, like CEIL/FLOOR, can't be used with window aggregate.
### Other Rules
- The window clause must occur after the PARTITION BY clause and before the GROUP BY clause. It cannot be used with a GROUP BY clause.
- The window clause must occur after the PARTITION BY clause. It cannot be used with a GROUP BY clause.
- SELECT clauses on windows can contain only the following expressions:
- Constants
- Aggregate functions
......@@ -82,7 +78,7 @@ These pseudocolumns occur after the aggregation clause.
1. A huge volume of interpolation output may be returned using `FILL`, so it's recommended to specify the time range when using `FILL`. The maximum number of interpolation values that can be returned in a single query is 10,000,000.
2. The result set is in ascending order of timestamp when you aggregate by time window.
3. If aggregate by window is used on STable, the aggregate function is performed on all the rows matching the filter conditions. If `GROUP BY` is not used in the query, the result set will be returned in ascending order of timestamp; otherwise the result set is not exactly in the order of ascending timestamp in each group.
3. If aggregate by window is used on STable, the aggregate function is performed on all the rows matching the filter conditions. If `PARTITION BY` is not used in the query, the result set will be returned in strict ascending order of timestamp; otherwise the result set will be returned in the order of ascending timestamp in each group.
:::
......@@ -112,9 +108,9 @@ When using time windows, note the following:
Please note that the `timezone` parameter should be configured to be the same value in the `taos.cfg` configuration file on client side and server side.
- The result set is in ascending order of timestamp when you aggregate by time window.
### Status Window
### State Window
In case of using integer, bool, or string to represent the status of a device at any given moment, continuous rows with the same status belong to a status window. Once the status changes, the status window closes. As shown in the following figure, there are two status windows according to status, [2019-04-28 14:22:07,2019-04-28 14:22:10] and [2019-04-28 14:22:11,2019-04-28 14:22:12]. Status window is not applicable to STable for now.
In case of using integer, bool, or string to represent the status of a device at any given moment, continuous rows with the same status belong to a status window. Once the status changes, the status window closes. As shown in the following figure, there are two state windows according to status, [2019-04-28 14:22:07,2019-04-28 14:22:10] and [2019-04-28 14:22:11,2019-04-28 14:22:12].
![TDengine Database Status Window](./timewindow-3.webp)
......@@ -124,13 +120,19 @@ In case of using integer, bool, or string to represent the status of a device at
SELECT COUNT(*), FIRST(ts), status FROM temp_tb_1 STATE_WINDOW(status);
```
Only care about the information of the status window when the status is 2. For example:
```
SELECT * FROM (SELECT COUNT(*) AS cnt, FIRST(ts) AS fst, status FROM temp_tb_1 STATE_WINDOW(status)) t WHERE status = 2;
```
### Session Window
The primary key, i.e. timestamp, is used to determine which session window a row belongs to. As shown in the figure below, if the limit of time interval for the session window is specified as 12 seconds, then the 6 rows in the figure constitutes 2 time windows, [2019-04-28 14:22:10,2019-04-28 14:22:30] and [2019-04-28 14:23:10,2019-04-28 14:23:30] because the time difference between 2019-04-28 14:22:30 and 2019-04-28 14:23:10 is 40 seconds, which exceeds the time interval limit of 12 seconds.
![TDengine Database Session Window](./timewindow-2.webp)
If the time interval between two continuous rows are within the time interval specified by `tol_value` they belong to the same session window; otherwise a new session window is started automatically. Session window is not supported on STable for now.
If the time interval between two continuous rows are within the time interval specified by `tol_value` they belong to the same session window; otherwise a new session window is started automatically.
```
......
......@@ -9,15 +9,54 @@ This document describes how to manage permissions in TDengine.
## Create a User
```sql
CREATE USER use_name PASS 'password';
CREATE USER user_name PASS 'password' [SYSINFO {1|0}];
```
This statement creates a user account.
The maximum length of use_name is 23 bytes.
The maximum length of user_name is 23 bytes.
The maximum length of password is 128 bytes. The password can include leters, digits, and special characters excluding single quotation marks, double quotation marks, backticks, backslashes, and spaces. The password cannot be empty.
`SYSINFO` indicates whether the user is allowed to view system information. `1` means allowed, `0` means not allowed. System information includes server configuration, dnode, vnode, storage. The default value is `1`.
For example, we can create a user whose password is `123456` and is able to view system information.
```sql
taos> create user test pass '123456' sysinfo 1;
Query OK, 0 of 0 rows affected (0.001254s)
```
## View Users
To show the users in the system, please use
```sql
SHOW USERS;
```
This is an example:
```sql
taos> show users;
name | super | enable | sysinfo | create_time |
================================================================================
test | 0 | 1 | 1 | 2022-08-29 15:10:27.315 |
root | 1 | 1 | 1 | 2022-08-29 15:03:34.710 |
Query OK, 2 rows in database (0.001657s)
```
Alternatively, you can get the user information by querying a built-in table, INFORMATION_SCHEMA.INS_USERS. For example:
```sql
taos> select * from information_schema.ins_users;
name | super | enable | sysinfo | create_time |
================================================================================
test | 0 | 1 | 1 | 2022-08-29 15:10:27.315 |
root | 1 | 1 | 1 | 2022-08-29 15:03:34.710 |
Query OK, 2 rows in database (0.001953s)
```
## Delete a User
```sql
......@@ -40,6 +79,13 @@ alter_user_clause: {
- ENABLE: Specify whether the user is enabled or disabled. 1 indicates enabled and 0 indicates disabled.
- SYSINFO: Specify whether the user can query system information. 1 indicates that the user can query system information and 0 indicates that the user cannot query system information.
For example, you can use below command to disable user `test`:
```sql
taos> alter user test enable 0;
Query OK, 0 of 0 rows affected (0.001160s)
```
## Grant Permissions
......@@ -62,7 +108,7 @@ priv_level : {
}
```
Grant permissions to a user.
Grant permissions to a user, this feature is only available in enterprise edition.
Permissions are granted on the database level. You can grant read or write permissions.
......@@ -92,4 +138,4 @@ priv_level : {
```
Revoke permissions from a user.
Revoke permissions from a user, this feature is only available in enterprise edition.
......@@ -79,7 +79,7 @@ dotnet add exmaple.csproj reference src/TDengine.csproj
## Establish a Connection
``` C#
``` csharp
using TDengineDriver;
namespace TDengineExample
......
......@@ -4,7 +4,7 @@ import PkgListV3 from "/components/PkgListV3";
<PkgListV3 type={1} sys="Linux" />
[All Downloads](../../releases)
[All Downloads](../../releases/tdengine)
2. Unzip
......
......@@ -4,7 +4,7 @@ import PkgListV3 from "/components/PkgListV3";
<PkgListV3 type={4} sys="Windows" />
[All Downloads](../../releases)
[All Downloads](../../releases/tdengine)
2. Execute the installer, select the default value as prompted, and complete the installation
3. Installation path
......
......@@ -30,7 +30,7 @@ taosAdapter provides the following features.
### Install taosAdapter
If you use the TDengine server, you don't need additional steps to install taosAdapter. You can download taosAdapter from [TDengine 3.0 released versions](../../releases) to download the TDengine server installation package. If you need to deploy taosAdapter separately on another server other than the TDengine server, you should install the full TDengine server package on that server to install taosAdapter. If you need to build taosAdapter from source code, you can refer to the [Building taosAdapter]( https://github.com/taosdata/taosadapter/blob/3.0/BUILD.md) documentation.
If you use the TDengine server, you don't need additional steps to install taosAdapter. You can download taosAdapter from [TDengine 3.0 released versions](../../releases/tdengine) to download the TDengine server installation package. If you need to deploy taosAdapter separately on another server other than the TDengine server, you should install the full TDengine server package on that server to install taosAdapter. If you need to build taosAdapter from source code, you can refer to the [Building taosAdapter]( https://github.com/taosdata/taosadapter/blob/3.0/BUILD.md) documentation.
### Start/Stop taosAdapter
......
---
sidebar_label: JupyterLab
title: Connect JupyterLab to TDengine
---
JupyterLab is the next generation of the ubiquitous Jupyter Notebook. In this note we show you how to install the TDengine Python connector to connect to TDengine in JupyterLab. You can then insert data and perform queries against the TDengine instance within JupyterLab.
## Install JupyterLab
Installing JupyterLab is very easy. Installation instructions can be found at:
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html.
If you don't feel like clicking on the link here are the instructions.
Jupyter's preferred Python package manager is pip, so we show the instructions for pip.
You can also use **conda** or **pipenv** if you are managing Python environments.
````
pip install jupyterlab
````
For **conda** you can run:
````
conda install -c conda-forge jupyterlab
````
For **pipenv** you can run:
````
pipenv install jupyterlab
pipenv shell
````
## Run JupyterLab
You can start JupyterLab from the command line by running:
````
jupyter lab
````
This will automatically launch your default browser and connect to your JupyterLab instance, usually on port 8888.
## Install the TDengine Python connector
You can now install the TDengine Python connector as follows.
Start a new Python kernel in JupyterLab.
If using **conda** run the following:
````
# Install a conda package in the current Jupyter kernel
import sys
!conda install --yes --prefix {sys.prefix} taospy
````
If using **pip** run the following:
````
# Install a pip package in the current Jupyter kernel
import sys
!{sys.executable} -m pip install taospy
````
## Connect to TDengine
You can find detailed examples to use the Python connector, in the TDengine documentation here.
Once you have installed the TDengine Python connector in your JupyterLab kernel, the process of connecting to TDengine is the same as that you would use if you weren't using JupyterLab.
Each TDengine instance, has a database called "log" which has monitoring information about the TDengine instance.
In the "log" database there is a [supertable](https://docs.tdengine.com/taos-sql/stable/) called "disks_info".
The structure of this table is as follows:
````
taos> desc disks_info;
Field | Type | Length | Note |
=================================================================================
ts | TIMESTAMP | 8 | |
datadir_l0_used | FLOAT | 4 | |
datadir_l0_total | FLOAT | 4 | |
datadir_l1_used | FLOAT | 4 | |
datadir_l1_total | FLOAT | 4 | |
datadir_l2_used | FLOAT | 4 | |
datadir_l2_total | FLOAT | 4 | |
dnode_id | INT | 4 | TAG |
dnode_ep | BINARY | 134 | TAG |
Query OK, 9 row(s) in set (0.000238s)
````
The code below is used to fetch data from this table into a pandas DataFrame.
````
import sys
import taos
import pandas
def sqlQuery(conn):
df: pandas.DataFrame = pandas.read_sql("select * from log.disks_info limit 500", conn)
print(df)
return df
conn = taos.connect()
result = sqlQuery(conn)
print(result)
````
TDengine has connectors for various languages including Node.js, Go, PHP and there are kernels for these languages which can be found [here](https://github.com/jupyter/jupyter/wiki/Jupyter-kernels).
---
sidebar_label: Releases
title: Released Versions
---
import Release from "/components/ReleaseV3";
<Release versionPrefix="3.0" />
---
sidebar_label: TDengine
title: TDengine
description: TDengine release history, Release Notes and download links.
---
import Release from "/components/ReleaseV3";
## 3.0.1.2
<Release type="tdengine" version="3.0.1.2" />
## 3.0.1.1
<Release type="tdengine" version="3.0.1.1" />
## 3.0.1.0
<Release type="tdengine" version="3.0.1.0" />
---
sidebar_label: taosTools
title: taosTools
description: taosTools release history, Release Notes, download links.
---
import Release from "/components/ReleaseV3";
## 2.2.2
<Release type="tools" version="2.2.2" />
## 2.2.0
<Release type="tools" version="2.2.0" />
## 2.1.3
<Release type="tools" version="2.1.3" />
label: Releases
\ No newline at end of file
bin
obj
.vs
*.sln
\ No newline at end of file
asyncQuery/bin
connect/bin
influxdbLine/bin
optsJSON/bin
optsTelnet/bin
query/bin
sqlInsert/bin
stmtInsert/bin
subscribe/bin
wsConnect/bin
wsInsert/bin
wsQuery/bin
wsStmt/bin
asyncQuery/obj
connect/obj
influxdbLine/obj
optsJSON/obj
optsTelnet/obj
query/obj
sqlInsert/obj
stmtInsert/obj
subscribe/obj
wsConnect/obj
wsInsert/obj
wsQuery/obj
wsStmt/obj
\ No newline at end of file
......@@ -11,11 +11,17 @@ namespace TDengineExample
static void Main()
{
IntPtr conn = GetConnection();
QueryAsyncCallback queryAsyncCallback = new QueryAsyncCallback(QueryCallback);
TDengine.QueryAsync(conn, "select * from meters", queryAsyncCallback, IntPtr.Zero);
Thread.Sleep(2000);
TDengine.Close(conn);
TDengine.Cleanup();
try
{
QueryAsyncCallback queryAsyncCallback = new QueryAsyncCallback(QueryCallback);
TDengine.QueryAsync(conn, "select * from meters", queryAsyncCallback, IntPtr.Zero);
Thread.Sleep(2000);
}
finally
{
TDengine.Close(conn);
}
}
static void QueryCallback(IntPtr param, IntPtr taosRes, int code)
......@@ -27,11 +33,11 @@ namespace TDengineExample
}
else
{
Console.WriteLine($"async query data failed, failed code {code}");
throw new Exception($"async query data failed,code:{code},reason:{TDengine.Error(taosRes)}");
}
}
// Iteratively call this interface until "numOfRows" is no greater than 0.
// Iteratively call this interface until "numOfRows" is no greater than 0.
static void FetchRawBlockCallback(IntPtr param, IntPtr taosRes, int numOfRows)
{
if (numOfRows > 0)
......@@ -43,7 +49,7 @@ namespace TDengineExample
for (int i = 0; i < dataList.Count; i++)
{
if (i != 0 && (i+1) % metaList.Count == 0)
if (i != 0 && (i + 1) % metaList.Count == 0)
{
Console.WriteLine("{0}\t|", dataList[i]);
}
......@@ -63,7 +69,7 @@ namespace TDengineExample
}
else
{
Console.WriteLine($"FetchRawBlockCallback callback error, error code {numOfRows}");
throw new Exception($"FetchRawBlockCallback callback error, error code {numOfRows}");
}
TDengine.FreeResult(taosRes);
}
......@@ -79,8 +85,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
Environment.Exit(0);
throw new Exception("Connect to TDengine failed");
}
else
{
......
......@@ -9,7 +9,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.0" />
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
......@@ -16,7 +16,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
throw new Exception("Connect to TDengine failed");
}
else
{
......

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 16
VisualStudioVersion = 16.0.30114.105
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "asyncquery", "asyncQuery\asyncquery.csproj", "{E2A5F00C-14E7-40E1-A2DE-6AB2975616D3}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "connect", "connect\connect.csproj", "{CCC5042D-93FC-4AE0-B2F6-7E692FD476B7}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "influxdbline", "influxdbLine\influxdbline.csproj", "{6A24FB80-1E3C-4E2D-A5AB-914FA583874D}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "optsJSON", "optsJSON\optsJSON.csproj", "{6725A961-0C66-4196-AC98-8D3F3D757D6C}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "optstelnet", "optsTelnet\optstelnet.csproj", "{B3B50D25-688B-44D4-8683-482ABC52FFCA}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "query", "query\query.csproj", "{F2B7D13B-FE04-4C5C-BB6D-C12E0A9D9970}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "stmtinsert", "stmtInsert\stmtinsert.csproj", "{B40D6BED-BE3C-4B44-9B12-28BE441311BA}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "subscribe", "subscribe\subscribe.csproj", "{C3D45A8E-AFC0-4547-9F3C-467B0B583DED}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "wsConnect", "wsConnect\wsConnect.csproj", "{51E19494-845E-49ED-97C7-749AE63111BD}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "wsInsert", "wsInsert\wsInsert.csproj", "{13E2233B-4AFF-40D9-AF42-AB3F01617540}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "wsQuery", "wsQuery\wsQuery.csproj", "{0F394169-C456-442C-929D-C2D43A0EEC7B}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "wsStmt", "wsStmt\wsStmt.csproj", "{27B9C9AB-9055-4BF2-8A14-4E59F09D5985}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "sqlinsert", "sqlInsert\sqlinsert.csproj", "{CD24BD12-8550-4627-A11D-707B446F48C3}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Release|Any CPU = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{E2A5F00C-14E7-40E1-A2DE-6AB2975616D3}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{E2A5F00C-14E7-40E1-A2DE-6AB2975616D3}.Debug|Any CPU.Build.0 = Debug|Any CPU
{E2A5F00C-14E7-40E1-A2DE-6AB2975616D3}.Release|Any CPU.ActiveCfg = Release|Any CPU
{E2A5F00C-14E7-40E1-A2DE-6AB2975616D3}.Release|Any CPU.Build.0 = Release|Any CPU
{CCC5042D-93FC-4AE0-B2F6-7E692FD476B7}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{CCC5042D-93FC-4AE0-B2F6-7E692FD476B7}.Debug|Any CPU.Build.0 = Debug|Any CPU
{CCC5042D-93FC-4AE0-B2F6-7E692FD476B7}.Release|Any CPU.ActiveCfg = Release|Any CPU
{CCC5042D-93FC-4AE0-B2F6-7E692FD476B7}.Release|Any CPU.Build.0 = Release|Any CPU
{6A24FB80-1E3C-4E2D-A5AB-914FA583874D}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{6A24FB80-1E3C-4E2D-A5AB-914FA583874D}.Debug|Any CPU.Build.0 = Debug|Any CPU
{6A24FB80-1E3C-4E2D-A5AB-914FA583874D}.Release|Any CPU.ActiveCfg = Release|Any CPU
{6A24FB80-1E3C-4E2D-A5AB-914FA583874D}.Release|Any CPU.Build.0 = Release|Any CPU
{6725A961-0C66-4196-AC98-8D3F3D757D6C}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{6725A961-0C66-4196-AC98-8D3F3D757D6C}.Debug|Any CPU.Build.0 = Debug|Any CPU
{6725A961-0C66-4196-AC98-8D3F3D757D6C}.Release|Any CPU.ActiveCfg = Release|Any CPU
{6725A961-0C66-4196-AC98-8D3F3D757D6C}.Release|Any CPU.Build.0 = Release|Any CPU
{B3B50D25-688B-44D4-8683-482ABC52FFCA}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{B3B50D25-688B-44D4-8683-482ABC52FFCA}.Debug|Any CPU.Build.0 = Debug|Any CPU
{B3B50D25-688B-44D4-8683-482ABC52FFCA}.Release|Any CPU.ActiveCfg = Release|Any CPU
{B3B50D25-688B-44D4-8683-482ABC52FFCA}.Release|Any CPU.Build.0 = Release|Any CPU
{F2B7D13B-FE04-4C5C-BB6D-C12E0A9D9970}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{F2B7D13B-FE04-4C5C-BB6D-C12E0A9D9970}.Debug|Any CPU.Build.0 = Debug|Any CPU
{F2B7D13B-FE04-4C5C-BB6D-C12E0A9D9970}.Release|Any CPU.ActiveCfg = Release|Any CPU
{F2B7D13B-FE04-4C5C-BB6D-C12E0A9D9970}.Release|Any CPU.Build.0 = Release|Any CPU
{B40D6BED-BE3C-4B44-9B12-28BE441311BA}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{B40D6BED-BE3C-4B44-9B12-28BE441311BA}.Debug|Any CPU.Build.0 = Debug|Any CPU
{B40D6BED-BE3C-4B44-9B12-28BE441311BA}.Release|Any CPU.ActiveCfg = Release|Any CPU
{B40D6BED-BE3C-4B44-9B12-28BE441311BA}.Release|Any CPU.Build.0 = Release|Any CPU
{C3D45A8E-AFC0-4547-9F3C-467B0B583DED}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{C3D45A8E-AFC0-4547-9F3C-467B0B583DED}.Debug|Any CPU.Build.0 = Debug|Any CPU
{C3D45A8E-AFC0-4547-9F3C-467B0B583DED}.Release|Any CPU.ActiveCfg = Release|Any CPU
{C3D45A8E-AFC0-4547-9F3C-467B0B583DED}.Release|Any CPU.Build.0 = Release|Any CPU
{51E19494-845E-49ED-97C7-749AE63111BD}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{51E19494-845E-49ED-97C7-749AE63111BD}.Debug|Any CPU.Build.0 = Debug|Any CPU
{51E19494-845E-49ED-97C7-749AE63111BD}.Release|Any CPU.ActiveCfg = Release|Any CPU
{51E19494-845E-49ED-97C7-749AE63111BD}.Release|Any CPU.Build.0 = Release|Any CPU
{13E2233B-4AFF-40D9-AF42-AB3F01617540}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{13E2233B-4AFF-40D9-AF42-AB3F01617540}.Debug|Any CPU.Build.0 = Debug|Any CPU
{13E2233B-4AFF-40D9-AF42-AB3F01617540}.Release|Any CPU.ActiveCfg = Release|Any CPU
{13E2233B-4AFF-40D9-AF42-AB3F01617540}.Release|Any CPU.Build.0 = Release|Any CPU
{0F394169-C456-442C-929D-C2D43A0EEC7B}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{0F394169-C456-442C-929D-C2D43A0EEC7B}.Debug|Any CPU.Build.0 = Debug|Any CPU
{0F394169-C456-442C-929D-C2D43A0EEC7B}.Release|Any CPU.ActiveCfg = Release|Any CPU
{0F394169-C456-442C-929D-C2D43A0EEC7B}.Release|Any CPU.Build.0 = Release|Any CPU
{27B9C9AB-9055-4BF2-8A14-4E59F09D5985}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{27B9C9AB-9055-4BF2-8A14-4E59F09D5985}.Debug|Any CPU.Build.0 = Debug|Any CPU
{27B9C9AB-9055-4BF2-8A14-4E59F09D5985}.Release|Any CPU.ActiveCfg = Release|Any CPU
{27B9C9AB-9055-4BF2-8A14-4E59F09D5985}.Release|Any CPU.Build.0 = Release|Any CPU
{CD24BD12-8550-4627-A11D-707B446F48C3}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{CD24BD12-8550-4627-A11D-707B446F48C3}.Debug|Any CPU.Build.0 = Debug|Any CPU
{CD24BD12-8550-4627-A11D-707B446F48C3}.Release|Any CPU.ActiveCfg = Release|Any CPU
{CD24BD12-8550-4627-A11D-707B446F48C3}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
EndGlobal
......@@ -17,8 +17,7 @@ namespace TDengineExample
IntPtr res = TDengine.SchemalessInsert(conn, lines, lines.Length, (int)TDengineSchemalessProtocol.TSDB_SML_LINE_PROTOCOL, (int)TDengineSchemalessPrecision.TSDB_SML_TIMESTAMP_MILLI_SECONDS);
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("SchemalessInsert failed since " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("SchemalessInsert failed since " + TDengine.Error(res));
}
else
{
......@@ -26,7 +25,6 @@ namespace TDengineExample
Console.WriteLine($"SchemalessInsert success, affected {affectedRows} rows");
}
TDengine.FreeResult(res);
ExitProgram(conn, 0);
}
static IntPtr GetConnection()
......@@ -39,9 +37,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
TDengine.Cleanup();
Environment.Exit(1);
throw new Exception("Connect to TDengine failed");
}
else
{
......@@ -55,23 +51,15 @@ namespace TDengineExample
IntPtr res = TDengine.Query(conn, "CREATE DATABASE test");
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("failed to create database, reason: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("failed to create database, reason: " + TDengine.Error(res));
}
res = TDengine.Query(conn, "USE test");
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("failed to change database, reason: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("failed to change database, reason: " + TDengine.Error(res));
}
}
static void ExitProgram(IntPtr conn, int exitCode)
{
TDengine.Close(conn);
TDengine.Cleanup();
Environment.Exit(exitCode);
}
}
}
......@@ -7,27 +7,31 @@ namespace TDengineExample
static void Main()
{
IntPtr conn = GetConnection();
PrepareDatabase(conn);
string[] lines = { "[{\"metric\": \"meters.current\", \"timestamp\": 1648432611249, \"value\": 10.3, \"tags\": {\"location\": \"California.SanFrancisco\", \"groupid\": 2}}," +
try
{
PrepareDatabase(conn);
string[] lines = { "[{\"metric\": \"meters.current\", \"timestamp\": 1648432611249, \"value\": 10.3, \"tags\": {\"location\": \"California.SanFrancisco\", \"groupid\": 2}}," +
" {\"metric\": \"meters.voltage\", \"timestamp\": 1648432611249, \"value\": 219, \"tags\": {\"location\": \"California.LosAngeles\", \"groupid\": 1}}, " +
"{\"metric\": \"meters.current\", \"timestamp\": 1648432611250, \"value\": 12.6, \"tags\": {\"location\": \"California.SanFrancisco\", \"groupid\": 2}}," +
" {\"metric\": \"meters.voltage\", \"timestamp\": 1648432611250, \"value\": 221, \"tags\": {\"location\": \"California.LosAngeles\", \"groupid\": 1}}]"
};
IntPtr res = TDengine.SchemalessInsert(conn, lines, 1, (int)TDengineSchemalessProtocol.TSDB_SML_JSON_PROTOCOL, (int)TDengineSchemalessPrecision.TSDB_SML_TIMESTAMP_NOT_CONFIGURED);
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("SchemalessInsert failed since " + TDengine.Error(res));
ExitProgram(conn, 1);
IntPtr res = TDengine.SchemalessInsert(conn, lines, 1, (int)TDengineSchemalessProtocol.TSDB_SML_JSON_PROTOCOL, (int)TDengineSchemalessPrecision.TSDB_SML_TIMESTAMP_NOT_CONFIGURED);
if (TDengine.ErrorNo(res) != 0)
{
throw new Exception("SchemalessInsert failed since " + TDengine.Error(res));
}
else
{
int affectedRows = TDengine.AffectRows(res);
Console.WriteLine($"SchemalessInsert success, affected {affectedRows} rows");
}
TDengine.FreeResult(res);
}
else
finally
{
int affectedRows = TDengine.AffectRows(res);
Console.WriteLine($"SchemalessInsert success, affected {affectedRows} rows");
TDengine.Close(conn);
}
TDengine.FreeResult(res);
ExitProgram(conn, 0);
}
static IntPtr GetConnection()
{
......@@ -39,9 +43,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
TDengine.Cleanup();
Environment.Exit(1);
throw new Exception("Connect to TDengine failed");
}
else
{
......@@ -55,22 +57,13 @@ namespace TDengineExample
IntPtr res = TDengine.Query(conn, "CREATE DATABASE test");
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("failed to create database, reason: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("failed to create database, reason: " + TDengine.Error(res));
}
res = TDengine.Query(conn, "USE test");
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("failed to change database, reason: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("failed to change database, reason: " + TDengine.Error(res));
}
}
static void ExitProgram(IntPtr conn, int exitCode)
{
TDengine.Close(conn);
TDengine.Cleanup();
Environment.Exit(exitCode);
}
}
}
......@@ -7,8 +7,10 @@ namespace TDengineExample
static void Main()
{
IntPtr conn = GetConnection();
PrepareDatabase(conn);
string[] lines = {
try
{
PrepareDatabase(conn);
string[] lines = {
"meters.current 1648432611249 10.3 location=California.SanFrancisco groupid=2",
"meters.current 1648432611250 12.6 location=California.SanFrancisco groupid=2",
"meters.current 1648432611249 10.8 location=California.LosAngeles groupid=3",
......@@ -18,20 +20,22 @@ namespace TDengineExample
"meters.voltage 1648432611249 221 location=California.LosAngeles groupid=3",
"meters.voltage 1648432611250 217 location=California.LosAngeles groupid=3",
};
IntPtr res = TDengine.SchemalessInsert(conn, lines, lines.Length, (int)TDengineSchemalessProtocol.TSDB_SML_TELNET_PROTOCOL, (int)TDengineSchemalessPrecision.TSDB_SML_TIMESTAMP_NOT_CONFIGURED);
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("SchemalessInsert failed since " + TDengine.Error(res));
ExitProgram(conn, 1);
IntPtr res = TDengine.SchemalessInsert(conn, lines, lines.Length, (int)TDengineSchemalessProtocol.TSDB_SML_TELNET_PROTOCOL, (int)TDengineSchemalessPrecision.TSDB_SML_TIMESTAMP_NOT_CONFIGURED);
if (TDengine.ErrorNo(res) != 0)
{
throw new Exception("SchemalessInsert failed since " + TDengine.Error(res));
}
else
{
int affectedRows = TDengine.AffectRows(res);
Console.WriteLine($"SchemalessInsert success, affected {affectedRows} rows");
}
TDengine.FreeResult(res);
}
else
catch
{
int affectedRows = TDengine.AffectRows(res);
Console.WriteLine($"SchemalessInsert success, affected {affectedRows} rows");
TDengine.Close(conn);
}
TDengine.FreeResult(res);
ExitProgram(conn, 0);
}
static IntPtr GetConnection()
{
......@@ -43,9 +47,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
TDengine.Cleanup();
Environment.Exit(1);
throw new Exception("Connect to TDengine failed");
}
else
{
......@@ -59,22 +61,13 @@ namespace TDengineExample
IntPtr res = TDengine.Query(conn, "CREATE DATABASE test");
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("failed to create database, reason: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("failed to create database, reason: " + TDengine.Error(res));
}
res = TDengine.Query(conn, "USE test");
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine("failed to change database, reason: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception("failed to change database, reason: " + TDengine.Error(res));
}
}
static void ExitProgram(IntPtr conn, int exitCode)
{
TDengine.Close(conn);
TDengine.Cleanup();
Environment.Exit(exitCode);
}
}
}
......@@ -9,48 +9,47 @@ namespace TDengineExample
static void Main()
{
IntPtr conn = GetConnection();
// run query
IntPtr res = TDengine.Query(conn, "SELECT * FROM meters LIMIT 2");
if (TDengine.ErrorNo(res) != 0)
try
{
Console.WriteLine("Failed to query since: " + TDengine.Error(res));
TDengine.Close(conn);
TDengine.Cleanup();
return;
}
// run query
IntPtr res = TDengine.Query(conn, "SELECT * FROM meters LIMIT 2");
if (TDengine.ErrorNo(res) != 0)
{
throw new Exception("Failed to query since: " + TDengine.Error(res));
}
// get filed count
int fieldCount = TDengine.FieldCount(res);
Console.WriteLine("fieldCount=" + fieldCount);
// get filed count
int fieldCount = TDengine.FieldCount(res);
Console.WriteLine("fieldCount=" + fieldCount);
// print column names
List<TDengineMeta> metas = LibTaos.GetMeta(res);
for (int i = 0; i < metas.Count; i++)
{
Console.Write(metas[i].name + "\t");
}
Console.WriteLine();
// print column names
List<TDengineMeta> metas = LibTaos.GetMeta(res);
for (int i = 0; i < metas.Count; i++)
{
Console.Write(metas[i].name + "\t");
}
Console.WriteLine();
// print values
List<Object> resData = LibTaos.GetData(res);
for (int i = 0; i < resData.Count; i++)
{
Console.Write($"|{resData[i].ToString()} \t");
if (((i + 1) % metas.Count == 0))
// print values
List<Object> resData = LibTaos.GetData(res);
for (int i = 0; i < resData.Count; i++)
{
Console.WriteLine("");
Console.Write($"|{resData[i].ToString()} \t");
if (((i + 1) % metas.Count == 0))
{
Console.WriteLine("");
}
}
Console.WriteLine();
// Free result after use
TDengine.FreeResult(res);
}
Console.WriteLine();
if (TDengine.ErrorNo(res) != 0)
finally
{
Console.WriteLine($"Query is not complete, Error {TDengine.ErrorNo(res)} {TDengine.Error(res)}");
TDengine.Close(conn);
}
// exit
TDengine.FreeResult(res);
TDengine.Close(conn);
TDengine.Cleanup();
}
static IntPtr GetConnection()
{
......@@ -62,8 +61,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
System.Environment.Exit(0);
throw new Exception("Connect to TDengine failed");
}
else
{
......
......@@ -9,7 +9,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.0" />
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
......@@ -9,22 +9,29 @@ namespace TDengineExample
static void Main()
{
IntPtr conn = GetConnection();
IntPtr res = TDengine.Query(conn, "CREATE DATABASE power");
CheckRes(conn, res, "failed to create database");
res = TDengine.Query(conn, "USE power");
CheckRes(conn, res, "failed to change database");
res = TDengine.Query(conn, "CREATE STABLE power.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) TAGS (location BINARY(64), groupId INT)");
CheckRes(conn, res, "failed to create stable");
var sql = "INSERT INTO d1001 USING meters TAGS('California.SanFrancisco', 2) VALUES ('2018-10-03 14:38:05.000', 10.30000, 219, 0.31000) ('2018-10-03 14:38:15.000', 12.60000, 218, 0.33000) ('2018-10-03 14:38:16.800', 12.30000, 221, 0.31000) " +
"d1002 USING power.meters TAGS('California.SanFrancisco', 3) VALUES('2018-10-03 14:38:16.650', 10.30000, 218, 0.25000) " +
"d1003 USING power.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 14:38:05.500', 11.80000, 221, 0.28000)('2018-10-03 14:38:16.600', 13.40000, 223, 0.29000) " +
"d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 14:38:05.000', 10.80000, 223, 0.29000)('2018-10-03 14:38:06.500', 11.50000, 221, 0.35000)";
res = TDengine.Query(conn, sql);
CheckRes(conn, res, "failed to insert data");
int affectedRows = TDengine.AffectRows(res);
Console.WriteLine("affectedRows " + affectedRows);
TDengine.FreeResult(res);
ExitProgram(conn, 0);
try
{
IntPtr res = TDengine.Query(conn, "CREATE DATABASE power");
CheckRes(conn, res, "failed to create database");
res = TDengine.Query(conn, "USE power");
CheckRes(conn, res, "failed to change database");
res = TDengine.Query(conn, "CREATE STABLE power.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) TAGS (location BINARY(64), groupId INT)");
CheckRes(conn, res, "failed to create stable");
var sql = "INSERT INTO d1001 USING meters TAGS('California.SanFrancisco', 2) VALUES ('2018-10-03 14:38:05.000', 10.30000, 219, 0.31000) ('2018-10-03 14:38:15.000', 12.60000, 218, 0.33000) ('2018-10-03 14:38:16.800', 12.30000, 221, 0.31000) " +
"d1002 USING power.meters TAGS('California.SanFrancisco', 3) VALUES('2018-10-03 14:38:16.650', 10.30000, 218, 0.25000) " +
"d1003 USING power.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 14:38:05.500', 11.80000, 221, 0.28000)('2018-10-03 14:38:16.600', 13.40000, 223, 0.29000) " +
"d1004 USING power.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 14:38:05.000', 10.80000, 223, 0.29000)('2018-10-03 14:38:06.500', 11.50000, 221, 0.35000)";
res = TDengine.Query(conn, sql);
CheckRes(conn, res, "failed to insert data");
int affectedRows = TDengine.AffectRows(res);
Console.WriteLine("affectedRows " + affectedRows);
TDengine.FreeResult(res);
}
finally
{
TDengine.Close(conn);
}
}
static IntPtr GetConnection()
......@@ -37,8 +44,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
Environment.Exit(0);
throw new Exception("Connect to TDengine failed");
}
else
{
......@@ -51,17 +57,10 @@ namespace TDengineExample
{
if (TDengine.ErrorNo(res) != 0)
{
Console.Write(errorMsg + " since: " + TDengine.Error(res));
ExitProgram(conn, 1);
throw new Exception($"{errorMsg} since: {TDengine.Error(res)}");
}
}
static void ExitProgram(IntPtr conn, int exitCode)
{
TDengine.Close(conn);
TDengine.Cleanup();
Environment.Exit(exitCode);
}
}
}
......
......@@ -9,45 +9,50 @@ namespace TDengineExample
static void Main()
{
conn = GetConnection();
PrepareSTable();
// 1. init and prepare
stmt = TDengine.StmtInit(conn);
if (stmt == IntPtr.Zero)
try
{
Console.WriteLine("failed to init stmt, " + TDengine.Error(stmt));
ExitProgram();
}
int res = TDengine.StmtPrepare(stmt, "INSERT INTO ? USING meters TAGS(?, ?) VALUES(?, ?, ?, ?)");
CheckStmtRes(res, "failed to prepare stmt");
PrepareSTable();
// 1. init and prepare
stmt = TDengine.StmtInit(conn);
if (stmt == IntPtr.Zero)
{
throw new Exception("failed to init stmt.");
}
int res = TDengine.StmtPrepare(stmt, "INSERT INTO ? USING meters TAGS(?, ?) VALUES(?, ?, ?, ?)");
CheckStmtRes(res, "failed to prepare stmt");
// 2. bind table name and tags
TAOS_MULTI_BIND[] tags = new TAOS_MULTI_BIND[2] { TaosMultiBind.MultiBindBinary(new string[]{"California.SanFrancisco"}), TaosMultiBind.MultiBindInt(new int?[] {2}) };
res = TDengine.StmtSetTbnameTags(stmt, "d1001", tags);
CheckStmtRes(res, "failed to bind table name and tags");
// 2. bind table name and tags
TAOS_MULTI_BIND[] tags = new TAOS_MULTI_BIND[2] { TaosMultiBind.MultiBindBinary(new string[] { "California.SanFrancisco" }), TaosMultiBind.MultiBindInt(new int?[] { 2 }) };
res = TDengine.StmtSetTbnameTags(stmt, "d1001", tags);
CheckStmtRes(res, "failed to bind table name and tags");
// 3. bind values
TAOS_MULTI_BIND[] values = new TAOS_MULTI_BIND[4] {
// 3. bind values
TAOS_MULTI_BIND[] values = new TAOS_MULTI_BIND[4] {
TaosMultiBind.MultiBindTimestamp(new long[2] { 1648432611249, 1648432611749}),
TaosMultiBind.MultiBindFloat(new float?[2] { 10.3f, 12.6f}),
TaosMultiBind.MultiBindInt(new int?[2] { 219, 218}),
TaosMultiBind.MultiBindFloat(new float?[2]{ 0.31f, 0.33f})
};
res = TDengine.StmtBindParamBatch(stmt, values);
CheckStmtRes(res, "failed to bind params");
res = TDengine.StmtBindParamBatch(stmt, values);
CheckStmtRes(res, "failed to bind params");
// 4. add batch
res = TDengine.StmtAddBatch(stmt);
CheckStmtRes(res, "failed to add batch");
// 4. add batch
res = TDengine.StmtAddBatch(stmt);
CheckStmtRes(res, "failed to add batch");
// 5. execute
res = TDengine.StmtExecute(stmt);
CheckStmtRes(res, "faild to execute");
// 5. execute
res = TDengine.StmtExecute(stmt);
CheckStmtRes(res, "faild to execute");
// 6. free
TaosMultiBind.FreeTaosBind(tags);
TaosMultiBind.FreeTaosBind(values);
}
finally
{
TDengine.Close(conn);
}
// 6. free
TaosMultiBind.FreeTaosBind(tags);
TaosMultiBind.FreeTaosBind(values);
TDengine.Close(conn);
TDengine.Cleanup();
}
static IntPtr GetConnection()
......@@ -60,8 +65,7 @@ namespace TDengineExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
Environment.Exit(0);
throw new Exception("Connect to TDengine failed");
}
else
{
......@@ -70,8 +74,6 @@ namespace TDengineExample
return conn;
}
static void PrepareSTable()
{
IntPtr res = TDengine.Query(conn, "CREATE DATABASE power");
......@@ -90,9 +92,8 @@ namespace TDengineExample
int code = TDengine.StmtClose(stmt);
if (code != 0)
{
Console.WriteLine($"falied to close stmt, {code} reason: {TDengine.StmtErrorStr(stmt)} ");
throw new Exception($"falied to close stmt, {code} reason: {TDengine.StmtErrorStr(stmt)} ");
}
ExitProgram();
}
}
......@@ -100,16 +101,9 @@ namespace TDengineExample
{
if (TDengine.ErrorNo(res) != 0)
{
Console.WriteLine(errorMsg + " since:" + TDengine.Error(res));
ExitProgram();
throw new Exception(errorMsg + " since:" + TDengine.Error(res));
}
}
static void ExitProgram()
{
TDengine.Close(conn);
TDengine.Cleanup();
Environment.Exit(1);
}
}
}
......@@ -11,11 +11,10 @@ namespace TMQExample
{
IntPtr conn = GetConnection();
string topic = "topic_example";
Console.WriteLine($"create topic if not exist {topic} as select * from meters");
//create topic
IntPtr res = TDengine.Query(conn, $"create topic if not exists {topic} as select * from meters");
if (res == IntPtr.Zero)
if (TDengine.ErrorNo(res) != 0 )
{
throw new Exception($"create topic failed, reason:{TDengine.Error(res)}");
}
......@@ -26,7 +25,7 @@ namespace TMQExample
TDConnectUser = "root",
TDConnectPasswd = "taosdata",
MsgWithTableName = "true",
TDConnectIp = "127.0.0.1",
TDConnectIp = "127.0.0.1",
};
// create consumer
......@@ -65,7 +64,6 @@ namespace TMQExample
List<string> topics = consumer.Subscription();
topics.ForEach(t => Console.WriteLine("topic name:{0}", t));
// unsubscribe
consumer.Unsubscribe();
......@@ -73,7 +71,6 @@ namespace TMQExample
consumer.Close();
TDengine.Close(conn);
}
static IntPtr GetConnection()
......@@ -86,8 +83,7 @@ namespace TMQExample
var conn = TDengine.Connect(host, username, password, dbname, port);
if (conn == IntPtr.Zero)
{
Console.WriteLine("Connect to TDengine failed");
System.Environment.Exit(0);
throw new Exception("Connect to TDengine failed");
}
else
{
......
......@@ -9,7 +9,7 @@
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.0" />
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
using System;
using TDengineWS.Impl;
namespace Examples
{
public class WSConnExample
{
static void Main(string[] args)
{
string DSN = "ws://root:taosdata@127.0.0.1:6041/test";
IntPtr wsConn = LibTaosWS.WSConnectWithDSN(DSN);
if (wsConn == IntPtr.Zero)
{
throw new Exception($"get WS connection failed,reason:{LibTaosWS.WSErrorStr(IntPtr.Zero)} code:{LibTaosWS.WSErrorNo(IntPtr.Zero)}");
}
else
{
Console.WriteLine("Establish connect success.");
}
// close connection.
LibTaosWS.WSClose(wsConn);
}
}
}
\ No newline at end of file
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
using System;
using TDengineWS.Impl;
namespace Examples
{
public class WSInsertExample
{
static void Main(string[] args)
{
string DSN = "ws://root:taosdata@127.0.0.1:6041/test";
IntPtr wsConn = LibTaosWS.WSConnectWithDSN(DSN);
// Assert if connection is validate
if (wsConn == IntPtr.Zero)
{
throw new Exception($"get WS connection failed,reason:{LibTaosWS.WSErrorStr(IntPtr.Zero)} code:{LibTaosWS.WSErrorNo(IntPtr.Zero)}");
}
else
{
Console.WriteLine("Establish connect success.");
}
string createTable = "CREATE STABLE test.meters (ts timestamp, current float, voltage int, phase float) TAGS (location binary(64), groupId int);";
string insert = "INSERT INTO test.d1001 USING test.meters TAGS('California.SanFrancisco', 2) VALUES ('2018-10-03 14:38:05.000', 10.30000, 219, 0.31000) ('2018-10-03 14:38:15.000', 12.60000, 218, 0.33000) ('2018-10-03 14:38:16.800', 12.30000, 221, 0.31000)" +
"test.d1002 USING test.meters TAGS('California.SanFrancisco', 3) VALUES('2018-10-03 14:38:16.650', 10.30000, 218, 0.25000)" +
"test.d1003 USING test.meters TAGS('California.LosAngeles', 2) VALUES('2018-10-03 14:38:05.500', 11.80000, 221, 0.28000)('2018-10-03 14:38:16.600', 13.40000, 223, 0.29000) " +
"test.d1004 USING test.meters TAGS('California.LosAngeles', 3) VALUES('2018-10-03 14:38:05.000', 10.80000, 223, 0.29000)('2018-10-03 14:38:06.500', 11.50000, 221, 0.35000)";
IntPtr wsRes = LibTaosWS.WSQuery(wsConn, createTable);
ValidInsert("create table", wsRes);
LibTaosWS.WSFreeResult(wsRes);
wsRes = LibTaosWS.WSQuery(wsConn, insert);
ValidInsert("insert data", wsRes);
LibTaosWS.WSFreeResult(wsRes);
// close connection.
LibTaosWS.WSClose(wsConn);
}
static void ValidInsert(string desc, IntPtr wsRes)
{
int code = LibTaosWS.WSErrorNo(wsRes);
if (code != 0)
{
throw new Exception($"execute SQL failed: reason: {LibTaosWS.WSErrorStr(wsRes)}, code:{code}");
}
else
{
Console.WriteLine("{0} success affect {2} rows, cost {1} nanoseconds", desc, LibTaosWS.WSTakeTiming(wsRes), LibTaosWS.WSAffectRows(wsRes));
}
}
}
}
// Establish connect success.
// create table success affect 0 rows, cost 3717542 nanoseconds
// insert data success affect 8 rows, cost 2613637 nanoseconds
\ No newline at end of file
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
using System;
using TDengineWS.Impl;
using System.Collections.Generic;
using TDengineDriver;
namespace Examples
{
public class WSQueryExample
{
static void Main(string[] args)
{
string DSN = "ws://root:taosdata@127.0.0.1:6041/test";
IntPtr wsConn = LibTaosWS.WSConnectWithDSN(DSN);
if (wsConn == IntPtr.Zero)
{
throw new Exception($"get WS connection failed,reason:{LibTaosWS.WSErrorStr(IntPtr.Zero)} code:{LibTaosWS.WSErrorNo(IntPtr.Zero)}");
}
else
{
Console.WriteLine("Establish connect success.");
}
string select = "select * from test.meters";
// optional:wsRes = LibTaosWS.WSQuery(wsConn, select);
IntPtr wsRes = LibTaosWS.WSQueryTimeout(wsConn, select, 1);
// Assert if query execute success.
int code = LibTaosWS.WSErrorNo(wsRes);
if (code != 0)
{
throw new Exception($"execute SQL failed: reason: {LibTaosWS.WSErrorStr(wsRes)}, code:{code}");
}
// get meta data
List<TDengineMeta> metas = LibTaosWS.WSGetFields(wsRes);
// get retrieved data
List<object> dataSet = LibTaosWS.WSGetData(wsRes);
// do something with result.
foreach (var meta in metas)
{
Console.Write("{0} {1}({2}) \t|\t", meta.name, meta.TypeName(), meta.size);
}
Console.WriteLine("");
for (int i = 0; i < dataSet.Count;)
{
for (int j = 0; j < metas.Count; j++)
{
Console.Write("{0}\t|\t", dataSet[i]);
i++;
}
Console.WriteLine("");
}
// Free result after use.
LibTaosWS.WSFreeResult(wsRes);
// close connection.
LibTaosWS.WSClose(wsConn);
}
}
}
// Establish connect success.
// ts TIMESTAMP(8) | current FLOAT(4) | voltage INT(4) | phase FLOAT(4) | location BINARY(64) | groupid INT(4) |
// 1538548685000 | 10.8 | 223 | 0.29 | California.LosAngeles | 3 |
// 1538548686500 | 11.5 | 221 | 0.35 | California.LosAngeles | 3 |
// 1538548685500 | 11.8 | 221 | 0.28 | California.LosAngeles | 2 |
// 1538548696600 | 13.4 | 223 | 0.29 | California.LosAngeles | 2 |
// 1538548685000 | 10.3 | 219 | 0.31 | California.SanFrancisco | 2 |
// 1538548695000 | 12.6 | 218 | 0.33 | California.SanFrancisco | 2 |
// 1538548696800 | 12.3 | 221 | 0.31 | California.SanFrancisco | 2 |
// 1538548696650 | 10.3 | 218 | 0.25 | California.SanFrancisco | 3 |
\ No newline at end of file
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
using System;
using TDengineWS.Impl;
using TDengineDriver;
using System.Runtime.InteropServices;
namespace Examples
{
public class WSStmtExample
{
static void Main(string[] args)
{
const string DSN = "ws://root:taosdata@127.0.0.1:6041/test";
const string table = "meters";
const string database = "test";
const string childTable = "d1005";
string insert = $"insert into ? using {database}.{table} tags(?,?) values(?,?,?,?)";
const int numOfTags = 2;
const int numOfColumns = 4;
// Establish connection
IntPtr wsConn = LibTaosWS.WSConnectWithDSN(DSN);
if (wsConn == IntPtr.Zero)
{
throw new Exception($"get WS connection failed,reason:{LibTaosWS.WSErrorStr(IntPtr.Zero)} code:{LibTaosWS.WSErrorNo(IntPtr.Zero)}");
}
else
{
Console.WriteLine("Establish connect success...");
}
// init stmt
IntPtr wsStmt = LibTaosWS.WSStmtInit(wsConn);
if (wsStmt != IntPtr.Zero)
{
int code = LibTaosWS.WSStmtPrepare(wsStmt, insert);
ValidStmtStep(code, wsStmt, "WSStmtPrepare");
TAOS_MULTI_BIND[] wsTags = new TAOS_MULTI_BIND[] { WSMultiBind.WSBindNchar(new string[] { "California.SanDiego" }), WSMultiBind.WSBindInt(new int?[] { 4 }) };
code = LibTaosWS.WSStmtSetTbnameTags(wsStmt, $"{database}.{childTable}", wsTags, numOfTags);
ValidStmtStep(code, wsStmt, "WSStmtSetTbnameTags");
TAOS_MULTI_BIND[] data = new TAOS_MULTI_BIND[4];
data[0] = WSMultiBind.WSBindTimestamp(new long[] { 1538548687000, 1538548688000, 1538548689000, 1538548690000, 1538548691000 });
data[1] = WSMultiBind.WSBindFloat(new float?[] { 10.30F, 10.40F, 10.50F, 10.60F, 10.70F });
data[2] = WSMultiBind.WSBindInt(new int?[] { 223, 221, 222, 220, 219 });
data[3] = WSMultiBind.WSBindFloat(new float?[] { 0.31F, 0.32F, 0.33F, 0.35F, 0.28F });
code = LibTaosWS.WSStmtBindParamBatch(wsStmt, data, numOfColumns);
ValidStmtStep(code, wsStmt, "WSStmtBindParamBatch");
code = LibTaosWS.WSStmtAddBatch(wsStmt);
ValidStmtStep(code, wsStmt, "WSStmtAddBatch");
IntPtr stmtAffectRowPtr = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(Int32)));
code = LibTaosWS.WSStmtExecute(wsStmt, stmtAffectRowPtr);
ValidStmtStep(code, wsStmt, "WSStmtExecute");
Console.WriteLine("WS STMT insert {0} rows...", Marshal.ReadInt32(stmtAffectRowPtr));
Marshal.FreeHGlobal(stmtAffectRowPtr);
LibTaosWS.WSStmtClose(wsStmt);
// Free unmanaged memory
WSMultiBind.WSFreeTaosBind(wsTags);
WSMultiBind.WSFreeTaosBind(data);
//check result with SQL "SELECT * FROM test.d1005;"
}
else
{
throw new Exception("Init STMT failed...");
}
// close connection.
LibTaosWS.WSClose(wsConn);
}
static void ValidStmtStep(int code, IntPtr wsStmt, string desc)
{
if (code != 0)
{
throw new Exception($"{desc} failed,reason: {LibTaosWS.WSErrorStr(wsStmt)}, code: {code}");
}
else
{
Console.WriteLine("{0} success...", desc);
}
}
}
}
// WSStmtPrepare success...
// WSStmtSetTbnameTags success...
// WSStmtBindParamBatch success...
// WSStmtAddBatch success...
// WSStmtExecute success...
// WS STMT insert 5 rows...
\ No newline at end of file
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="TDengine.Connector" Version="3.0.1" />
</ItemGroup>
</Project>
......@@ -73,6 +73,7 @@ install.sh 安装脚本在执行过程中,会通过命令行交互界面询问
</TabItem>
<TabItem value="apt-get" label="apt-get">
可以使用 `apt-get` 工具从官方仓库安装。
**配置包仓库**
......
```csharp title="原生连接"
{{#include docs/examples/csharp/ConnectExample.cs}}
{{#include docs/examples/csharp/connect/Program.cs}}
```
:::info
C# 连接器目前只支持原生连接。
```csharp title="WebSocket 连接"
{{#include docs/examples/csharp/wsConnect/Program.cs}}
```
:::
```csharp
{{#include docs/examples/csharp/InfluxDBLineExample.cs}}
{{#include docs/examples/csharp/influxdbLine/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/OptsJsonExample.cs}}
{{#include docs/examples/csharp/optsJSON/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/OptsTelnetExample.cs}}
{{#include docs/examples/csharp/optsTelnet/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/SQLInsertExample.cs}}
{{#include docs/examples/csharp/sqlInsert/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/StmtInsertExample.cs}}
{{#include docs/examples/csharp/stmtInsert/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/QueryExample.cs}}
{{#include docs/examples/csharp/query/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/AsyncQueryExample.cs}}
{{#include docs/examples/csharp/asyncQuery/Program.cs}}
```
```csharp
{{#include docs/examples/csharp/SubscribeDemo.cs}}
{{#include docs/examples/csharp/subscribe/Program.cs}}
```
\ No newline at end of file
......@@ -4,7 +4,7 @@ sidebar_label: REST API
description: 详细介绍 TDengine 提供的 RESTful API.
---
为支持各种不同类型平台的开发,TDengine 提供符合 REST 设计标准的 API,即 REST API。为最大程度降低学习成本,不同于其他数据库 REST API 的设计方法,TDengine 直接通过 HTTP POST 请求 BODY 中包含的 SQL 语句来操作数据库,仅需要一个 URL。REST 连接器的使用参见 [视频教程](https://www.taosdata.com/blog/2020/11/11/1965.html)。
为支持各种不同类型平台的开发,TDengine 提供符合 RESTful 设计标准的 API,即 REST API。为最大程度降低学习成本,不同于其他数据库 REST API 的设计方法,TDengine 直接通过 HTTP POST 请求 BODY 中包含的 SQL 语句来操作数据库,仅需要一个 URL。REST API 的使用参见 [视频教程](https://www.taosdata.com/blog/2020/11/11/1965.html)。
:::note
与原生连接器的一个区别是,RESTful 接口是无状态的,因此 `USE db_name` 指令没有效果,所有对表名、超级表名的引用都需要指定数据库名前缀。支持在 RESTful URL 中指定 db_name,这时如果 SQL 语句中没有指定数据库名前缀的话,会使用 URL 中指定的这个 db_name。
......@@ -18,7 +18,7 @@ RESTful 接口不依赖于任何 TDengine 的库,因此客户端不需要安
在已经安装 TDengine 服务器端的情况下,可以按照如下方式进行验证。
下面以 Ubuntu 环境中使用 curl 工具(确认已经安装)来验证 RESTful 接口的正常,验证前请确认 taosAdapter 服务已开启,在 Linux 系统上此服务默认由 systemd 管理,使用命令 `systemctl start taosadapter` 启动。
下面以 Ubuntu 环境中使用 `curl` 工具(请确认已经安装)来验证 RESTful 接口是否工作正常,验证前请确认 taosAdapter 服务已开启,在 Linux 系统上此服务默认由 systemd 管理,使用命令 `systemctl start taosadapter` 启动。
下面示例是列出所有的数据库,请把 h1.taosdata.com 和 6041(缺省值)替换为实际运行的 TDengine 服务 FQDN 和端口号:
......
---
title: Schemaless API
sidebar_label: Schemaless API
description: 详细介绍 TDengine 提供的 Schemaless API.
---
TDengine 提供了兼容 InfluxDB (v1) 和 OpenTSDB 行协议的 Schemaless API。支持 InfluxDB(v1) 或 OpenTSDB 行协议写入数据的第三方软件无需修改代码,只要修改配置的 EndPoint URL 就可以直接把数据写入 TDengine 数据库。
### 兼容 InfluxDB 行协议写入的方法
您可以配置任何支持使用 InfluxDB(v1) 行协议的应用访问地址 `http://<fqdn>:6041/<APIEndPoint>` 来写入 InfluxDB 兼容格式的数据到 TDengine。EndPoint 如下:
```text
/influxdb/v1/write?<param1=value1>?<param2=value2>...
```
支持 InfluxDB 查询参数如下:
- `db` 指定 TDengine 使用的数据库名
- `precision` TDengine 使用的时间精度
- `u` TDengine 用户名
- `p` TDengine 密码
注意: 目前不支持 InfluxDB 的 token 验证方式,仅支持 Basic 验证和查询参数验证。
参考链接:[InfluxDB v1 写接口](https://docs.influxdata.com/influxdb/v2.0/reference/api/influxdb-1x/write/)
### 兼容 OpenTSDB 行协议写入的方法
您可以配置任何支持 OpenTSDB 行协议的应用访问地址 `http://<fqdn>:6041/<APIEndPoint>` 来写入 OpenTSDB 兼容格式的数据到 TDengine。EndPoint 如下:
```text
/opentsdb/v1/put/json/<db>
/opentsdb/v1/put/telnet/<db>
```
参考链接:
- [OpenTSDB JSON](http://opentsdb.net/docs/build/html/api_http/put.html)
- [OpenTSDB Telnet](http://opentsdb.net/docs/build/html/api_telnet/put.html)
......@@ -17,7 +17,7 @@ import CSAsyncQuery from "../07-develop/04-query-data/_cs_async.mdx"
`TDengine.Connector` 是 TDengine 提供的 C# 语言连接器。C# 开发人员可以通过它开发存取 TDengine 集群数据的 C# 应用软件。
`TDengine.Connector` 连接器支持通过 TDengine 客户端驱动(taosc)建立与 TDengine 运行实例的连接,提供数据写入、查询、订阅、schemaless 数据写入、参数绑定接口数据写入等功能 `TDengine.Connector` 目前暂未提供 REST 连接方式,用户可以参考 [REST API](../rest-api/) 文档自行编写
`TDengine.Connector` 连接器支持通过 TDengine 客户端驱动(taosc)建立与 TDengine 运行实例的连接,提供数据写入、查询、数据订阅、schemaless 数据写入、参数绑定接口数据写入等功能。 `TDengine.Connector` 还支持 WebSocket,通过 DSN 建立 WebSocket 连接,提供数据写入、查询、参数绑定接口数据写入等功能
本文介绍如何在 Linux 或 Windows 环境中安装 `TDengine.Connector`,并通过 `TDengine.Connector` 连接 TDengine 集群,进行数据写入、查询等基本操作。
......@@ -35,12 +35,29 @@ import CSAsyncQuery from "../07-develop/04-query-data/_cs_async.mdx"
## 支持的功能特性
<Tabs defaultValue="native">
<TabItem value="native" label="原生连接">
1. 连接管理
2. 普通查询
3. 连续查询
4. 参数绑定
5. 订阅功能
5. 数据订阅(TMQ)
6. Schemaless
</TabItem>
<TabItem value="rest" label="WebSocket 连接">
1. 连接管理
2. 普通查询
3. 连续查询
4. 参数绑定
</TabItem>
</Tabs>
## 安装步骤
......@@ -79,7 +96,13 @@ dotnet add exmaple.csproj reference src/TDengine.csproj
## 建立连接
``` C#
<Tabs defaultValue="native">
<TabItem value="native" label="原生连接">
使用 host、username、password、port 等信息建立连接。
``` csharp
using TDengineDriver;
namespace TDengineExample
......@@ -109,17 +132,63 @@ namespace TDengineExample
}
}
}
```
</TabItem>
<TabItem value="rest" label="WebSocket 连接">
使用 DSN 建立 WebSocket 连接 DSN 连接。 描述字符串基本结构如下:
```text
[<protocol>]://[[<username>:<password>@]<host>:<port>][/<database>][?<p1>=<v1>[&<p2>=<v2>]]
|------------|---|-----------|-----------|------|------|------------|-----------------------|
| protocol | | username | password | host | port | database | params |
```
各部分意义见下表:
* **protocol**: 显示指定以何种方式建立连接,例如:`ws://localhost:6041` 指定以 Websocket 方式建立连接(支持http/ws)。
* **username/password**: 用于创建连接的用户名及密码(默认`root/taosdata`)。
* **host/port**: 指定创建连接的服务器及端口,WebSocket 连接默认为 `localhost:6041` 。
* **database**: 指定默认连接的数据库名。
* **params**:其他可选参数。
``` csharp
{{#include docs/examples/csharp/wsConnect/Program.cs}}
```
</TabItem>
</Tabs>
## 使用示例
### 写入数据
#### SQL 写入
<Tabs defaultValue="native">
<TabItem value="native" label="原生连接">
<CSInsert />
</TabItem>
<TabItem value="rest" label="WebSocket 连接">
```csharp
{{#include docs/examples/csharp/wsInsert/Program.cs}}
```
</TabItem>
</Tabs>
#### InfluxDB 行协议写入
<CSInfluxLine />
......@@ -132,12 +201,50 @@ namespace TDengineExample
<CSOpenTSDBJson />
#### 参数绑定
<Tabs defaultValue="native">
<TabItem value="native" label="原生连接">
``` csharp
{{#include docs/examples/csharp/stmtInsert/Program.cs}}
```
</TabItem>
<TabItem value="rest" label="WebSocket 连接">
```csharp
{{#include docs/examples/csharp/wsStmt/Program.cs}}
```
</TabItem>
</Tabs>
### 查询数据
#### 同步查询
<Tabs defaultValue="native">
<TabItem value="native" label="原生连接">
<CSQuery />
</TabItem>
<TabItem value="rest" label="WebSocket 连接">
```csharp
{{#include docs/examples/csharp/wsQuery/Program.cs}}
```
</TabItem>
</Tabs>
#### 异步查询
<CSAsyncQuery />
......@@ -151,12 +258,15 @@ namespace TDengineExample
| [stmt](https://github.com/taosdata/taos-connector-dotnet/tree/3.0/examples/Stmt) | 使用 TDengine.Connector 实现的参数绑定插入和查询的示例 |
| [schemaless](https://github.com/taosdata/taos-connector-dotnet/blob/3.0/examples/schemaless) | 使用 TDengine.Connector 实现的使用 schemaless 写入的示例 |
| [async query](https://github.com/taosdata/taos-connector-dotnet/blob/3.0/examples/AsyncQuery/QueryAsync.cs) | 使用 TDengine.Connector 实现的异步查询的示例 |
| [TMQ](https://github.com/taosdata/taos-connector-dotnet/blob/3.0/examples/TMQ/TMQ.cs) | 使用 TDengine.Connector 实现的订阅数据的示例 |
| [数据订阅(TMQ)](https://github.com/taosdata/taos-connector-dotnet/blob/3.0/examples/TMQ/TMQ.cs) | 使用 TDengine.Connector 实现的订阅数据的示例 |
| [Basic WebSocket Usage](https://github.com/taosdata/taos-connector-dotnet/blob/5a4a7cd0dbcda114447cdc6d0c6dedd8e84a52da/examples/WS/WebSocketSample.cs) | 使用 TDengine.Connector 的 WebSocket 基本的示例 |
| [Basic WebSocket STMT](https://github.com/taosdata/taos-connector-dotnet/blob/5a4a7cd0dbcda114447cdc6d0c6dedd8e84a52da/examples/WS/WebSocketSTMT.cs) | 使用 TDengine.Connector 的 WebSocket STMT 基本的示例 |
## 重要更新记录
| TDengine.Connector | 说明 |
|--------------------|--------------------------------|
| 3.0.1 | 支持 WebSocket 和 Cloud,查询,插入,参数绑定。 |
| 3.0.0 | 支持 TDengine 3.0.0.0,不兼容 2.x。新增接口TDengine.Impl.GetData(),解析查询结果。 |
| 1.0.7 | 修复 TDengine.Query()内存泄露。 |
| 1.0.6 | 修复 schemaless 在 1.0.4 和 1.0.5 中失效 bug。 |
......
---
sidebar_label: 数据类型
title: 数据类型
description: "TDengine 支持的数据类型: 时间戳、浮点型、JSON 类型等"
description: 'TDengine 支持的数据类型: 时间戳、浮点型、JSON 类型等'
---
## 时间戳
......@@ -9,64 +9,65 @@ description: "TDengine 支持的数据类型: 时间戳、浮点型、JSON 类
使用 TDengine,最重要的是时间戳。创建并插入记录、查询历史记录的时候,均需要指定时间戳。时间戳有如下规则:
- 时间格式为 `YYYY-MM-DD HH:mm:ss.MS`,默认时间分辨率为毫秒。比如:`2017-08-12 18:25:58.128`
- 内部函数 now 是客户端的当前时间
- 插入记录时,如果时间戳为 now,插入数据时使用提交这条记录的客户端的当前时间
- Epoch Time:时间戳也可以是一个长整数,表示从 UTC 时间 1970-01-01 00:00:00 开始的毫秒数。相应地,如果所在 Database 的时间精度设置为“微秒”,则长整型格式的时间戳含义也就对应于从 UTC 时间 1970-01-01 00:00:00 开始的微秒数;纳秒精度逻辑类似
- 时间可以加减,比如 now-2h,表明查询时刻向前推 2 个小时(最近 2 小时)。数字后面的时间单位可以是 b(纳秒)、u(微秒)、a(毫秒)、s(秒)、m(分)、h(小时)、d(天)、w(周)。 比如 `select * from t1 where ts > now-2w and ts <= now-1w`,表示查询两周前整整一周的数据。在指定降采样操作(down sampling)的时间窗口(interval)时,时间单位还可以使用 n (自然月) 和 y (自然年)
- 内部函数 NOW 是客户端的当前时间
- 插入记录时,如果时间戳为 NOW,插入数据时使用提交这条记录的客户端的当前时间
- Epoch Time:时间戳也可以是一个长整数,表示从 UTC 时间 1970-01-01 00:00:00 开始的毫秒数。相应地,如果所在 Database 的时间精度设置为“微秒”,则长整型格式的时间戳含义也就对应于从 UTC 时间 1970-01-01 00:00:00 开始的微秒数;纳秒精度逻辑相同
- 时间可以加减,比如 NOW-2h,表明查询时刻向前推 2 个小时(最近 2 小时)。数字后面的时间单位可以是 b(纳秒)、u(微秒)、a(毫秒)、s(秒)、m(分)、h(小时)、d(天)、w(周)。 比如 `SELECT * FROM t1 WHERE ts > NOW-2w AND ts <= NOW-1w`,表示查询两周前整整一周的数据。在指定降采样操作(Down Sampling)的时间窗口(Interval)时,时间单位还可以使用 n(自然月)和 y(自然年)
TDengine 缺省的时间戳精度是毫秒,但通过在 `CREATE DATABASE` 时传递的 PRECISION 参数也可以支持微秒和纳秒。
TDengine 缺省的时间戳精度是毫秒,但通过在 `CREATE DATABASE` 时传递的 `PRECISION` 参数也可以支持微秒和纳秒。
```sql
CREATE DATABASE db_name PRECISION 'ns';
```
## 数据类型
在 TDengine 中,普通表的数据模型中可使用以下数据类型。
| # | **类型** | **Bytes** | **说明** |
| --- | :-------: | --------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1 | TIMESTAMP | 8 | 时间戳。缺省精度毫秒,可支持微秒和纳秒,详细说明见上节。 |
| 2 | INT | 4 | 整型,范围 [-2^31, 2^31-1] |
| 3 | INT UNSIGNED| 4| 无符号整数,[0, 2^32-1]
| 4 | BIGINT | 8 | 长整型,范围 [-2^63, 2^63-1] |
| 5 | BIGINT UNSIGNED | 8 | 长整型,范围 [0, 2^64-1] |
| 6 | FLOAT | 4 | 浮点型,有效位数 6-7,范围 [-3.4E38, 3.4E38] |
| 7 | DOUBLE | 8 | 双精度浮点型,有效位数 15-16,范围 [-1.7E308, 1.7E308] |
| 8 | BINARY | 自定义 | 记录单字节字符串,建议只用于处理 ASCII 可见字符,中文等多字节字符需使用 nchar。 |
| 9 | SMALLINT | 2 | 短整型, 范围 [-32768, 32767] |
| 10 | SMALLINT UNSIGNED | 2| 无符号短整型,范围 [0, 65535] |
| 11 | TINYINT | 1 | 单字节整型,范围 [-128, 127] |
| 12 | TINYINT UNSIGNED | 1 | 无符号单字节整型,范围 [0, 255] |
| 13 | BOOL | 1 | 布尔型,{true, false} |
| 14 | NCHAR | 自定义 | 记录包含多字节字符在内的字符串,如中文字符。每个 nchar 字符占用 4 bytes 的存储空间。字符串两端使用单引号引用,字符串内的单引号需用转义字符 `\’`。nchar 使用时须指定字符串大小,类型为 nchar(10) 的列表示此列的字符串最多存储 10 个 nchar 字符,会固定占用 40 bytes 的空间。如果用户字符串长度超出声明长度,将会报错。 |
| 15 | JSON | | json 数据类型, 只有 tag 可以是 json 格式 |
| 16 | VARCHAR | 自定义 | BINARY类型的别名 |
| # | **类型** | **Bytes** | **说明** |
| --- | :---------------: | --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1 | TIMESTAMP | 8 | 时间戳。缺省精度毫秒,可支持微秒和纳秒,详细说明见上节。 |
| 2 | INT | 4 | 整型,范围 [-2^31, 2^31-1] |
| 3 | INT UNSIGNED | 4 | 无符号整数,[0, 2^32-1] |
| 4 | BIGINT | 8 | 长整型,范围 [-2^63, 2^63-1] |
| 5 | BIGINT UNSIGNED | 8 | 长整型,范围 [0, 2^64-1] |
| 6 | FLOAT | 4 | 浮点型,有效位数 6-7,范围 [-3.4E38, 3.4E38] |
| 7 | DOUBLE | 8 | 双精度浮点型,有效位数 15-16,范围 [-1.7E308, 1.7E308] |
| 8 | BINARY | 自定义 | 记录单字节字符串,建议只用于处理 ASCII 可见字符,中文等多字节字符需使用 NCHAR |
| 9 | SMALLINT | 2 | 短整型, 范围 [-32768, 32767] |
| 10 | SMALLINT UNSIGNED | 2 | 无符号短整型,范围 [0, 65535] |
| 11 | TINYINT | 1 | 单字节整型,范围 [-128, 127] |
| 12 | TINYINT UNSIGNED | 1 | 无符号单字节整型,范围 [0, 255] |
| 13 | BOOL | 1 | 布尔型,{true, false} |
| 14 | NCHAR | 自定义 | 记录包含多字节字符在内的字符串,如中文字符。每个 NCHAR 字符占用 4 字节的存储空间。字符串两端使用单引号引用,字符串内的单引号需用转义字符 `\'`。NCHAR 使用时须指定字符串大小,类型为 NCHAR(10) 的列表示此列的字符串最多存储 10 个 NCHAR 字符,会固定占用 40 字节的空间。如果用户字符串长度超出声明长度,将会报错。 |
| 15 | JSON | | JSON 数据类型, 只有 Tag 可以是 JSON 格式 |
| 16 | VARCHAR | 自定义 | BINARY 类型的别名 |
:::note
- TDengine 对 SQL 语句中的英文字符不区分大小写,自动转化为小写执行。因此用户大小写敏感的字符串及密码,需要使用单引号将字符串引起来。
- 虽然 BINARY 类型在底层存储上支持字节型的二进制字符,但不同编程语言对二进制数据的处理方式并不保证一致,因此建议在 BINARY 类型中只存储 ASCII 可见字符,而避免存储不可见字符。多字节的数据,例如中文字符,则需要使用 NCHAR 类型进行保存。如果强行使用 BINARY 类型保存中文字符,虽然有时也能正常读写,但并不带有字符集信息,很容易出现数据乱码甚至数据损坏等情况。
- BINARY 类型理论上最长可以有 16374 字节。binary 仅支持字符串输入,字符串两端需使用单引号引用。使用时须指定大小,如 binary(20) 定义了最长为 20 个单字节字符的字符串,每个字符占 1 byte 的存储空间,总共固定占用 20 bytes 的空间,此时如果用户字符串超出 20 字节将会报错。对于字符串内的单引号,可以用转义字符反斜线加单引号来表示,即 `\’`
- BINARY 类型理论上最长可以有 16,374 字节。BINARY 仅支持字符串输入,字符串两端需使用单引号引用。使用时须指定大小,如 BINARY(20) 定义了最长为 20 个单字节字符的字符串,每个字符占 1 字节的存储空间,总共固定占用 20 字节的空间,此时如果用户字符串超出 20 字节将会报错。对于字符串内的单引号,可以用转义字符反斜线加单引号来表示,即 `\'`
- SQL 语句中的数值类型将依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型,因此在使用时要注意相应类型越界的情况。例如,9999999999999999999 会认为超过长整型的上边界而溢出,而 9999999999999999999.0 会被认为是有效的浮点数。
:::
## 常量
TDengine支持多个类型的常量,细节如下表:
| # | **语法** | **类型** | **说明** |
| --- | :-------: | --------- | -------------------------------------- |
| 1 | [{+ \| -}]123 | BIGINT | 整型数值的字面量的类型均为BIGINT。如果用户输入超过了BIGINT的表示范围,TDengine 按BIGINT对数值进行截断。|
| 2 | 123.45 | DOUBLE | 浮点数值的字面量的类型均为DOUBLE。TDengine依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型。|
| 3 | 1.2E3 | DOUBLE | 科学计数法的字面量的类型为DOUBLE。|
| 4 | 'abc' | BINARY | 单引号括住的内容为字符串字面值,其类型为BINARY,BINARY的size为实际的字符个数。对于字符串内的单引号,可以用转义字符反斜线加单引号来表示,即 \'。|
| 5 | "abc" | BINARY | 双引号括住的内容为字符串字面值,其类型为BINARY,BINARY的size为实际的字符个数。对于字符串内的双引号,可以用转义字符反斜线加单引号来表示,即 \"。 |
| 6 | TIMESTAMP {'literal' \| "literal"} | TIMESTAMP | TIMESTAMP关键字表示后面的字符串字面量需要被解释为TIMESTAMP类型。字符串需要满足YYYY-MM-DD HH:mm:ss.MS格式,其时间分辨率为当前数据库的时间分辨率。 |
| 7 | {TRUE \| FALSE} | BOOL | 布尔类型字面量。 |
| 8 | {'' \| "" \| '\t' \| "\t" \| ' ' \| " " \| NULL } | -- | 空值字面量。可以用于任意类型。|
TDengine 支持多个类型的常量,细节如下表:
| # | **语法** | **类型** | **说明** |
| --- | :-----------------------------------------------: | --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1 | [{+ \| -}]123 | BIGINT | 整型数值的字面量的类型均为 BIGINT。如果用户输入超过了 BIGINT 的表示范围,TDengine 按 BIGINT 对数值进行截断。 |
| 2 | 123.45 | DOUBLE | 浮点数值的字面量的类型均为 DOUBLE。TDengine 依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型。 |
| 3 | 1.2E3 | DOUBLE | 科学计数法的字面量的类型为 DOUBLE。 |
| 4 | 'abc' | BINARY | 单引号括住的内容为字符串字面值,其类型为 BINARY,BINARY 的 Size 为实际的字符个数。对于字符串内的单引号,可以用转义字符反斜线加单引号来表示,即 `\'`。 |
| 5 | "abc" | BINARY | 双引号括住的内容为字符串字面值,其类型为 BINARY,BINARY 的 Size 为实际的字符个数。对于字符串内的双引号,可以用转义字符反斜线加单引号来表示,即 `\"`。 |
| 6 | TIMESTAMP {'literal' \| "literal"} | TIMESTAMP | TIMESTAMP 关键字表示后面的字符串字面量需要被解释为 TIMESTAMP 类型。字符串需要满足 YYYY-MM-DD HH:mm:ss.MS 格式,其时间分辨率为当前数据库的时间分辨率。 |
| 7 | {TRUE \| FALSE} | BOOL | 布尔类型字面量。 |
| 8 | {'' \| "" \| '\t' \| "\t" \| ' ' \| " " \| NULL } | -- | 空值字面量。可以用于任意类型。 |
:::note
- TDengine依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型,因此在使用时要注意相应类型越界的情况。例如,9999999999999999999会认为超过长整型的上边界而溢出,而9999999999999999999.0会被认为是有效的浮点数。
- TDengine 依据是否存在小数点,或使用科学计数法表示,来判断数值类型是否为整型或者浮点型,因此在使用时要注意相应类型越界的情况。例如,9999999999999999999 会认为超过长整型的上边界而溢出,而 9999999999999999999.0 会被认为是有效的浮点数。
:::
......@@ -17,6 +17,8 @@ INSERT INTO
[(field1_name, ...)]
VALUES (field1_value, ...) [(field1_value2, ...) ...] | FILE csv_file_path
...];
INSERT INTO tb_name [(field1_name, ...)] subquery
```
**关于时间戳**
......@@ -38,7 +40,7 @@ INSERT INTO
4. FILE 语法表示数据来自于 CSV 文件(英文逗号分隔、英文单引号括住每个值),CSV 文件无需表头。
5. 无论使用哪种语法,均可以在一条 INSERT 语句中同时向多个表插入数据。
5. `INSERT ... VALUES` 语句和 `INSERT ... FILE` 语句均可以在一条 INSERT 语句中同时向多个表插入数据。
6. INSERT 语句是完整解析后再执行的,对如下语句,不会再出现数据错误但建表成功的情况:
......@@ -48,6 +50,8 @@ INSERT INTO
7. 对于向多个子表插入数据的情况,依然会有部分数据写入失败,部分数据写入成功的情况。这是因为多个子表可能分布在不同的 VNODE 上,客户端将 INSERT 语句完整解析后,将数据发往各个涉及的 VNODE 上,每个 VNODE 独立进行写入操作。如果某个 VNODE 因为某些原因(比如网络问题或磁盘故障)导致写入失败,并不会影响其他 VNODE 节点的写入。
8. 可以使用 `INSERT ... subquery` 语句将 TDengine 中的数据插入到指定表中。subquery 可以是任意的查询语句。此语法只能用于子表和普通表,且不支持自动建表。
## 插入一条记录
指定已经创建好的数据子表的表名,并通过 VALUES 关键字提供一行或多行数据,即可向数据库写入这些数据。例如,执行如下语句可以写入一行记录:
......
......@@ -69,7 +69,7 @@ order_expr:
### 通配符
通配符 \* 可以用于代指全部列。对于普通表,结果中只有普通列。对于超级表和子表,还包含了 TAG 列。
通配符 \* 可以用于代指全部列。对于普通表和子表,结果中只有普通列。对于超级表,还包含了 TAG 列。
```sql
SELECT * FROM d1001;
......@@ -137,6 +137,8 @@ taos> SELECT ts, ts AS primary_key_ts FROM d1001;
### 伪列
**伪列**: 伪列的行为表现与普通数据列相似但其并不实际存储在表中。可以查询伪列,但不能对其做插入、更新和删除的操作。伪列有点像没有参数的函数。下面介绍是可用的伪列:
**TBNAME**
`TBNAME` 可以视为超级表中一个特殊的标签,代表子表的表名。
......@@ -356,7 +358,7 @@ SELECT ... FROM (SELECT ... FROM ...) ...;
- 与非嵌套的查询语句相比,外层查询所能支持的功能特性存在如下限制:
- 计算函数部分:
- 如果内层查询的结果数据未提供时间戳,那么计算过程隐式依赖时间戳的函数在外层会无法正常工作。例如:INTERP, DERIVATIVE, IRATE, LAST_ROW, FIRST, LAST, TWA, STATEDURATION, TAIL, UNIQUE。
- 如果内层查询的结果数据不是有效的时间序列,那么计算过程依赖数据为时间序列的函数在外层会无法正常工作。例如:LEASTSQUARES, ELAPSED, INTERP, DERIVATIVE, IRATE, TWA, DIFF, STATECOUNT, STATEDURATION, CSUM, MAVG, TAIL, UNIQUE。
- 如果内层查询的结果数据不是按时间戳有序,那么计算过程依赖数据按时间有序的函数在外层会无法正常工作。例如:LEASTSQUARES, ELAPSED, INTERP, DERIVATIVE, IRATE, TWA, DIFF, STATECOUNT, STATEDURATION, CSUM, MAVG, TAIL, UNIQUE。
- 计算过程需要两遍扫描的函数,在外层查询中无法正常工作。例如:此类函数包括:PERCENTILE。
:::
......
......@@ -1233,7 +1233,7 @@ SELECT SERVER_VERSION();
### SERVER_STATUS
```sql
SELECT SERVER_VERSION();
SELECT SERVER_STATUS();
```
**说明**:返回服务端当前的状态。
......@@ -46,7 +46,7 @@ SELECT select_list FROM tb_name
### 窗口子句的规则
- 窗口子句位于数据切分子句之后,GROUP BY 子句之前,且不可以和 GROUP BY 子句一起使用。
- 窗口子句位于数据切分子句之后,不可以和 GROUP BY 子句一起使用。
- 窗口子句将数据按窗口进行切分,对每个窗口进行 SELECT 列表中的表达式的计算,SELECT 列表中的表达式只能包含:
- 常量。
- _wstart伪列、_wend伪列和_wduration伪列。
......@@ -71,7 +71,7 @@ FILL 语句指定某一窗口区间数据缺失的情况下的填充模式。填
1. 使用 FILL 语句的时候可能生成大量的填充输出,务必指定查询的时间区间。针对每次查询,系统可返回不超过 1 千万条具有插值的结果。
2. 在时间维度聚合中,返回的结果中时间序列严格单调递增。
3. 如果查询对象是超级表,则聚合函数会作用于该超级表下满足值过滤条件的所有表的数据。如果查询中没有使用 PARTITION BY 语句,则返回的结果按照时间序列严格单调递增;如果查询中使用了 PARTITION BY 语句分组,则返回结果中每个 PARTITION 内按照时间序列严格单调递增。
3. 如果查询对象是超级表,则聚合函数会作用于该超级表下满足值过滤条件的所有表的数据。如果查询中没有使用 PARTITION BY 语句,则返回的结果按照时间序列严格单调递增;如果查询中使用了 PARTITION BY 语句分组,则返回结果中每个 PARTITION 内按照时间序列严格单调递增。
:::
......@@ -113,6 +113,12 @@ SELECT COUNT(*) FROM temp_tb_1 INTERVAL(1m) SLIDING(2m);
SELECT COUNT(*), FIRST(ts), status FROM temp_tb_1 STATE_WINDOW(status);
```
仅关心 status 为 2 时的状态窗口的信息。例如:
```
SELECT * FROM (SELECT COUNT(*) AS cnt, FIRST(ts) AS fst, status FROM temp_tb_1 STATE_WINDOW(status)) t WHERE status = 2;
```
### 会话窗口
会话窗口根据记录的时间戳主键的值来确定是否属于同一个会话。如下图所示,如果设置时间戳的连续的间隔小于等于 12 秒,则以下 6 条记录构成 2 个会话窗口,分别是:[2019-04-28 14:22:10,2019-04-28 14:22:30]和[2019-04-28 14:23:10,2019-04-28 14:23:30]。因为 2019-04-28 14:22:30 与 2019-04-28 14:23:10 之间的时间间隔是 40 秒,超过了连续时间间隔(12 秒)。
......
......@@ -196,7 +196,7 @@ AllowWebSockets
- `u` TDengine 用户名
- `p` TDengine 密码
注意: 目前不支持 InfluxDB 的 token 验证方式支持 Basic 验证和查询参数验证。
注意: 目前不支持 InfluxDB 的 token 验证方式,仅支持 Basic 验证和查询参数验证。
### OpenTSDB
......
......@@ -6,6 +6,14 @@ description: TDengine 发布历史、Release Notes 及下载链接
import Release from "/components/ReleaseV3";
## 3.0.1.2
<Release type="tdengine" version="3.0.1.2" />
## 3.0.1.1
<Release type="tdengine" version="3.0.1.1" />
## 3.0.1.0
<Release type="tdengine" version="3.0.1.0" />
......
......@@ -6,6 +6,14 @@ description: taosTools 的发布历史、Release Notes 和下载链接
import Release from "/components/ReleaseV3";
## 2.2.2
<Release type="tools" version="2.2.2" />
## 2.2.0
<Release type="tools" version="2.2.0" />
## 2.1.3
<Release type="tools" version="2.1.3" />
......@@ -2,7 +2,7 @@
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include "../../../../include/client/taos.h"
#include "taos.h"
#include "lauxlib.h"
#include "lua.h"
#include "lualib.h"
......@@ -35,7 +35,7 @@ static int l_connect(lua_State *L){
}
lua_getfield(L, 1, "port");
if (lua_isnumber(L,-1)){
if (lua_isnumber(L, -1)){
port = lua_tonumber(L, -1);
//printf("port = %d\n", port);
}
......@@ -60,7 +60,6 @@ static int l_connect(lua_State *L){
lua_settop(L,0);
taos_init();
lua_newtable(L);
int table_index = lua_gettop(L);
......@@ -102,7 +101,7 @@ static int l_query(lua_State *L){
printf("failed, reason:%s\n", taos_errstr(result));
lua_pushinteger(L, -1);
lua_setfield(L, table_index, "code");
lua_pushstring(L, taos_errstr(taos));
lua_pushstring(L, taos_errstr(result));
lua_setfield(L, table_index, "error");
return 1;
......@@ -113,7 +112,6 @@ static int l_query(lua_State *L){
int rows = 0;
int num_fields = taos_field_count(result);
const TAOS_FIELD *fields = taos_fetch_fields(result);
//char temp[256];
const int affectRows = taos_affected_rows(result);
// printf(" affect rows:%d\r\n", affectRows);
......@@ -122,7 +120,7 @@ static int l_query(lua_State *L){
lua_pushinteger(L, affectRows);
lua_setfield(L, table_index, "affected");
lua_newtable(L);
while ((row = taos_fetch_row(result))) {
//printf("row index:%d\n",rows);
rows++;
......@@ -136,7 +134,7 @@ static int l_query(lua_State *L){
}
lua_pushstring(L,fields[i].name);
int32_t* length = taos_fetch_lengths(result);
switch (fields[i].type) {
case TSDB_DATA_TYPE_TINYINT:
lua_pushinteger(L,*((char *)row[i]));
......@@ -158,7 +156,8 @@ static int l_query(lua_State *L){
break;
case TSDB_DATA_TYPE_BINARY:
case TSDB_DATA_TYPE_NCHAR:
lua_pushstring(L,(char *)row[i]);
//printf("type:%d, max len:%d, current len:%d\n",fields[i].type, fields[i].bytes, length[i]);
lua_pushlstring(L,(char *)row[i], length[i]);
break;
case TSDB_DATA_TYPE_TIMESTAMP:
lua_pushinteger(L,*((int64_t *)row[i]));
......@@ -166,6 +165,7 @@ static int l_query(lua_State *L){
case TSDB_DATA_TYPE_BOOL:
lua_pushinteger(L,*((char *)row[i]));
break;
case TSDB_DATA_TYPE_NULL:
default:
lua_pushnil(L);
break;
......@@ -235,112 +235,6 @@ static int l_async_query(lua_State *L){
return 1;
}
void stream_cb(void *param, TAOS_RES *result, TAOS_ROW row){
struct cb_param* p = (struct cb_param*) param;
TAOS_FIELD *fields = taos_fetch_fields(result);
int numFields = taos_num_fields(result);
// printf("\nnumfields:%d\n", numFields);
//printf("\n\r-----------------------------------------------------------------------------------\n");
lua_State *L = p->state;
lua_rawgeti(L, LUA_REGISTRYINDEX, p->callback);
lua_newtable(L);
for (int i = 0; i < numFields; ++i) {
if (row[i] == NULL) {
continue;
}
lua_pushstring(L,fields[i].name);
switch (fields[i].type) {
case TSDB_DATA_TYPE_TINYINT:
lua_pushinteger(L,*((char *)row[i]));
break;
case TSDB_DATA_TYPE_SMALLINT:
lua_pushinteger(L,*((short *)row[i]));
break;
case TSDB_DATA_TYPE_INT:
lua_pushinteger(L,*((int *)row[i]));
break;
case TSDB_DATA_TYPE_BIGINT:
lua_pushinteger(L,*((int64_t *)row[i]));
break;
case TSDB_DATA_TYPE_FLOAT:
lua_pushnumber(L,*((float *)row[i]));
break;
case TSDB_DATA_TYPE_DOUBLE:
lua_pushnumber(L,*((double *)row[i]));
break;
case TSDB_DATA_TYPE_BINARY:
case TSDB_DATA_TYPE_NCHAR:
lua_pushstring(L,(char *)row[i]);
break;
case TSDB_DATA_TYPE_TIMESTAMP:
lua_pushinteger(L,*((int64_t *)row[i]));
break;
case TSDB_DATA_TYPE_BOOL:
lua_pushinteger(L,*((char *)row[i]));
break;
default:
lua_pushnil(L);
break;
}
lua_settable(L, -3);
}
lua_call(L, 1, 0);
// printf("-----------------------------------------------------------------------------------\n\r");
}
static int l_open_stream(lua_State *L){
int r = luaL_ref(L, LUA_REGISTRYINDEX);
TAOS * taos = (TAOS*)lua_topointer(L,1);
const char * sqlstr = lua_tostring(L,2);
int stime = luaL_checknumber(L,3);
lua_newtable(L);
int table_index = lua_gettop(L);
struct cb_param *p = malloc(sizeof(struct cb_param));
p->state = L;
p->callback=r;
// printf("r:%d, L:%d\n",r,L);
void * s = taos_open_stream(taos,sqlstr,stream_cb,stime,p,NULL);
if (s == NULL) {
printf("failed to open stream, reason:%s\n", taos_errstr(taos));
free(p);
lua_pushnumber(L, -1);
lua_setfield(L, table_index, "code");
lua_pushstring(L, taos_errstr(taos));
lua_setfield(L, table_index, "error");
lua_pushlightuserdata(L,NULL);
lua_setfield(L, table_index, "stream");
}else{
// printf("success to open stream\n");
lua_pushnumber(L, 0);
lua_setfield(L, table_index, "code");
lua_pushstring(L, taos_errstr(taos));
lua_setfield(L, table_index, "error");
p->stream = s;
lua_pushlightuserdata(L,p);
lua_setfield(L, table_index, "stream");//stream has different content in lua and c.
}
return 1;
}
static int l_close_stream(lua_State *L){
//TODO:get stream and free cb_param
struct cb_param *p = lua_touserdata(L,1);
taos_close_stream(p->stream);
free(p);
return 0;
}
static int l_close(lua_State *L){
TAOS *taos= (TAOS*)lua_topointer(L,1);
......@@ -367,8 +261,6 @@ static const struct luaL_Reg lib[] = {
{"query", l_query},
{"query_a",l_async_query},
{"close", l_close},
{"open_stream", l_open_stream},
{"close_stream", l_close_stream},
{NULL, NULL}
};
......
......@@ -5,7 +5,7 @@
#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>
#include "taos.h"
#include <taos.h>
struct cb_param{
lua_State* state;
......@@ -60,6 +60,8 @@ static int l_connect(lua_State *L){
lua_settop(L,0);
taos_init();
lua_newtable(L);
int table_index = lua_gettop(L);
......
......@@ -9,6 +9,50 @@ local config = {
max_packet_size = 1024 * 1024
}
function dump(obj)
local getIndent, quoteStr, wrapKey, wrapVal, dumpObj
getIndent = function(level)
return string.rep("\t", level)
end
quoteStr = function(str)
return '"' .. string.gsub(str, '"', '\\"') .. '"'
end
wrapKey = function(val)
if type(val) == "number" then
return "[" .. val .. "]"
elseif type(val) == "string" then
return "[" .. quoteStr(val) .. "]"
else
return "[" .. tostring(val) .. "]"
end
end
wrapVal = function(val, level)
if type(val) == "table" then
return dumpObj(val, level)
elseif type(val) == "number" then
return val
elseif type(val) == "string" then
return quoteStr(val)
else
return tostring(val)
end
end
dumpObj = function(obj, level)
if type(obj) ~= "table" then
return wrapVal(obj)
end
level = level + 1
local tokens = {}
tokens[#tokens + 1] = "{"
for k, v in pairs(obj) do
tokens[#tokens + 1] = getIndent(level) .. wrapKey(k) .. " = " .. wrapVal(v, level) .. ","
end
tokens[#tokens + 1] = getIndent(level - 1) .. "}"
return table.concat(tokens, "\n")
end
return dumpObj(obj, 0)
end
local conn
local res = driver.connect(config)
if res.code ~=0 then
......@@ -37,7 +81,7 @@ else
print("select db--- pass.")
end
res = driver.query(conn,"create table m1 (ts timestamp, speed int,owner binary(20))")
res = driver.query(conn,"create table m1 (ts timestamp, speed int, owner binary(20), mark nchar(30))")
if res.code ~=0 then
print("create table---failed: "..res.error)
return
......@@ -45,7 +89,7 @@ else
print("create table--- pass.")
end
res = driver.query(conn,"insert into m1 values ('2019-09-01 00:00:00.001',0,'robotspace'), ('2019-09-01 00:00:00.002',1,'Hilink'),('2019-09-01 00:00:00.003',2,'Harmony')")
res = driver.query(conn,"insert into m1 values ('2019-09-01 00:00:00.001', 0, 'robotspace', '世界人民大团结万岁'), ('2019-09-01 00:00:00.002', 1, 'Hilink', '⾾⾿⿀⿁⿂⿃⿄⿅⿆⿇⿈⿉⿊⿋⿌⿍⿎⿏⿐⿑⿒⿓⿔⿕'),('2019-09-01 00:00:00.003', 2, 'Harmony', '₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵')")
if res.code ~=0 then
print("insert records failed: "..res.error)
return
......@@ -64,21 +108,25 @@ if res.code ~=0 then
return
else
if (#(res.item) == 3) then
print("select--- pass")
print("select--- pass")
print(res.item[1].mark)
print(res.item[2].mark)
print(res.item[3].mark)
else
print("select--- failed: expect 3 affected records, actually received "..#(res.item))
end
end
res = driver.query(conn,"CREATE TABLE thermometer (ts timestamp, degree double) TAGS(location binary(20), type int)")
res = driver.query(conn,"create table thermometer (ts timestamp, degree double) tags(location binary(20), type int)")
if res.code ~=0 then
print(res.error)
return
else
print("create super table--- pass")
end
res = driver.query(conn,"CREATE TABLE therm1 USING thermometer TAGS ('beijing', 1)")
res = driver.query(conn,"create table therm1 using thermometer tags ('beijing', 1)")
if res.code ~=0 then
print(res.error)
return
......@@ -86,7 +134,7 @@ else
print("create table--- pass")
end
res = driver.query(conn,"INSERT INTO therm1 VALUES ('2019-09-01 00:00:00.001', 20),('2019-09-01 00:00:00.002', 21)")
res = driver.query(conn,"insert into therm1 values ('2019-09-01 00:00:00.001', 20),('2019-09-01 00:00:00.002', 21)")
if res.code ~=0 then
print(res.error)
......@@ -99,14 +147,14 @@ else
end
end
res = driver.query(conn,"SELECT COUNT(*) count, AVG(degree) AS av, MAX(degree), MIN(degree) FROM thermometer WHERE location='beijing' or location='tianjin' GROUP BY location, type")
res = driver.query(conn,"select count(*) as cnt, avg(degree) as av, max(degree), min(degree) from thermometer where location='beijing' or location='tianjin' group by location, type")
if res.code ~=0 then
print("select from super table--- failed:"..res.error)
return
else
print("select from super table--- pass")
for i = 1, #(res.item) do
print("res:"..res.item[i].count)
print("res:"..res.item[i].cnt)
end
end
......@@ -127,30 +175,13 @@ end
driver.query_a(conn,"INSERT INTO therm1 VALUES ('2019-09-01 00:00:00.005', 100),('2019-09-01 00:00:00.006', 101),('2019-09-01 00:00:00.007', 102)", async_query_callback)
res = driver.query(conn, "create stream stream_avg_degree into avg_degree as select avg(degree) from thermometer interval(5s) sliding(1s)")
function stream_callback(t)
print("------------------------")
print("continuous query result:")
for key, value in pairs(t) do
print("key:"..key..", value:"..value)
end
end
local stream
res = driver.open_stream(conn,"SELECT COUNT(*) as count, AVG(degree) as avg, MAX(degree) as max, MIN(degree) as min FROM thermometer interval(2s) sliding(2s);)",0, stream_callback)
if res.code ~=0 then
print("open stream--- failed:"..res.error)
return
else
print("open stream--- pass")
stream = res.stream
end
print("From now on we start continous insert in an definite (infinite if you want) loop.")
print("From now on we start continous insert in an definite loop, pls wait for about 10 seconds and check stream table for result.")
local loop_index = 0
while loop_index < 30 do
while loop_index < 10 do
local t = os.time()*1000
local v = loop_index
local v = math.random(20)
res = driver.query(conn,string.format("INSERT INTO therm1 VALUES (%d, %d)",t,v))
if res.code ~=0 then
......@@ -162,7 +193,5 @@ while loop_index < 30 do
os.execute("sleep " .. 1)
loop_index = loop_index + 1
end
driver.close_stream(stream)
driver.query(conn,"DROP STREAM IF EXISTS avg_therm_s")
driver.close(conn)
......@@ -254,7 +254,7 @@ enum tmq_res_t {
TMQ_RES_INVALID = -1,
TMQ_RES_DATA = 1,
TMQ_RES_TABLE_META = 2,
TMQ_RES_TAOSX = 3,
TMQ_RES_METADATA = 3,
};
typedef struct tmq_raw_data {
......
......@@ -116,6 +116,7 @@ enum {
STREAM_INPUT__DATA_RETRIEVE,
STREAM_INPUT__GET_RES,
STREAM_INPUT__CHECKPOINT,
STREAM_INPUT__REF_DATA_BLOCK,
STREAM_INPUT__DESTROY,
};
......
......@@ -95,6 +95,8 @@ extern int64_t tsQueryBufferSizeBytes; // maximum allowed usage buffer size in
extern int32_t tsQueryPolicy;
extern int32_t tsQuerySmaOptimize;
extern bool tsQueryPlannerTrace;
extern int32_t tsQueryNodeChunkSize;
extern bool tsQueryUseNodeAllocator;
// client
extern int32_t tsMinSlidingTime;
......@@ -120,6 +122,7 @@ extern SDiskCfg tsDiskCfg[];
// udf
extern bool tsStartUdfd;
extern char tsUdfdResFuncs[];
// schemaless
extern char tsSmlChildTableName[];
......
......@@ -2956,7 +2956,7 @@ static FORCE_INLINE void* tDecodeSMqSubTopicEp(void* buf, SMqSubTopicEp* pTopicE
}
static FORCE_INLINE void tDeleteSMqSubTopicEp(SMqSubTopicEp* pSubTopicEp) {
// taosMemoryFree(pSubTopicEp->schema.pSchema);
if (pSubTopicEp->schema.nCols) taosMemoryFreeClear(pSubTopicEp->schema.pSchema);
taosArrayDestroy(pSubTopicEp->vgs);
}
......
......@@ -275,6 +275,17 @@ typedef struct SNodeList {
SListCell* pTail;
} SNodeList;
typedef struct SNodeAllocator SNodeAllocator;
int32_t nodesInitAllocatorSet();
void nodesDestroyAllocatorSet();
int32_t nodesCreateAllocator(int64_t queryId, int32_t chunkSize, int64_t* pAllocatorId);
int32_t nodesAcquireAllocator(int64_t allocatorId);
int32_t nodesReleaseAllocator(int64_t allocatorId);
int64_t nodesMakeAllocatorWeakRef(int64_t allocatorId);
int64_t nodesReleaseAllocatorWeakRef(int64_t allocatorId);
void nodesDestroyAllocator(int64_t allocatorId);
SNode* nodesMakeNode(ENodeType type);
void nodesDestroyNode(SNode* pNode);
......
......@@ -56,6 +56,7 @@ typedef struct SParseContext {
bool nodeOffline;
SArray* pTableMetaPos; // sql table pos => catalog data pos
SArray* pTableVgroupPos; // sql table pos => catalog data pos
int64_t allocatorId;
} SParseContext;
int32_t qParseSql(SParseContext* pCxt, SQuery** pQuery);
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册