Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
a434b133
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a434b133
编写于
10月 28, 2021
作者:
D
Double_V
提交者:
GitHub
10月 28, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'dygraph' into PTDN_ppocrv2
上级
ce92ff2e
bbf4625e
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
147 addition
and
64 deletion
+147
-64
benchmark/readme.md
benchmark/readme.md
+2
-6
benchmark/run_benchmark_det.sh
benchmark/run_benchmark_det.sh
+12
-6
benchmark/run_det.sh
benchmark/run_det.sh
+5
-5
test_tipc/docs/install.md
test_tipc/docs/install.md
+80
-7
test_tipc/docs/test_train_inference_python.md
test_tipc/docs/test_train_inference_python.md
+16
-16
test_tipc/prepare.sh
test_tipc/prepare.sh
+11
-7
test_tipc/test_train_inference_python.sh
test_tipc/test_train_inference_python.sh
+3
-3
tools/program.py
tools/program.py
+18
-14
未找到文件。
benchmark/readme.md
浏览文件 @
a434b133
# PaddleOCR DB/EAST 算法训练benchmark测试
# PaddleOCR DB/EAST
/PSE
算法训练benchmark测试
PaddleOCR/benchmark目录下的文件用于获取并分析训练日志。
训练采用icdar2015数据集,包括1000张训练图像和500张测试图像。模型配置采用resnet18_vd作为backbone,分别训练batch_size=8和batch_size=16的情况。
...
...
@@ -18,7 +18,7 @@ run_det.sh 执行方式如下:
```
# cd PaddleOCR/
bash benchmark/run_det.sh
bash benchmark/run_det.sh
```
以DB为例,将得到四个日志文件,如下:
...
...
@@ -28,7 +28,3 @@ det_res18_db_v2.0_sp_bs8_fp32_1
det_res18_db_v2.0_mp_bs16_fp32_1
det_res18_db_v2.0_mp_bs8_fp32_1
```
benchmark/run_benchmark_det.sh
浏览文件 @
a434b133
...
...
@@ -6,7 +6,7 @@ function _set_params(){
run_mode
=
${
1
:-
"sp"
}
# 单卡sp|多卡mp
batch_size
=
${
2
:-
"64"
}
fp_item
=
${
3
:-
"fp32"
}
# fp32|fp16
max_iter
=
${
4
:-
"
50
0"
}
# 可选,如果需要修改代码提前中断
max_iter
=
${
4
:-
"
1
0"
}
# 可选,如果需要修改代码提前中断
model_name
=
${
5
:-
"model_name"
}
run_log_path
=
${
TRAIN_LOG_DIR
:-
$(
pwd
)
}
# TRAIN_LOG_DIR 后续QA设置该参数
...
...
@@ -20,7 +20,7 @@ function _train(){
echo
"Train on
${
num_gpu_devices
}
GPUs"
echo
"current CUDA_VISIBLE_DEVICES=
$CUDA_VISIBLE_DEVICES
, gpus=
$num_gpu_devices
, batch_size=
$batch_size
"
train_cmd
=
"-c configs/det/
${
model_name
}
.yml -o Train.loader.batch_size_per_card=
${
batch_size
}
Global.epoch_num=
${
max_iter
}
"
train_cmd
=
"-c configs/det/
${
model_name
}
.yml -o Train.loader.batch_size_per_card=
${
batch_size
}
Global.epoch_num=
${
max_iter
}
Global.eval_batch_step=[0,20000] Global.print_batch_step=2
"
case
${
run_mode
}
in
sp
)
train_cmd
=
"python3.7 tools/train.py "
${
train_cmd
}
""
...
...
@@ -39,18 +39,24 @@ function _train(){
echo
-e
"
${
model_name
}
, SUCCESS"
export
job_fail_flag
=
0
fi
kill
-9
`
ps
-ef
|grep
'python3.7'
|awk
'{print $2}'
`
if
[
$run_mode
=
"mp"
-a
-d
mylog
]
;
then
rm
${
log_file
}
cp
mylog/workerlog.0
${
log_file
}
fi
}
# run log analysis
analysis_cmd
=
"python3.7 benchmark/analysis.py --filename
${
log_file
}
--mission_name
${
model_name
}
--run_mode
${
mode
}
--direction_id 0 --keyword 'ips:' --base_batch_size
${
batch_szi
e
}
--skip_steps 1 --gpu_num
${
num_gpu_devices
}
--index 1 --model_mode=-1 --ips_unit=samples/sec"
function
_analysis_log
(){
analysis_cmd
=
"python3.7 benchmark/analysis.py --filename
${
log_file
}
--mission_name
${
model_name
}
--run_mode
${
run_mode
}
--direction_id 0 --keyword 'ips:' --base_batch_size
${
batch_siz
e
}
--skip_steps 1 --gpu_num
${
num_gpu_devices
}
--index 1 --model_mode=-1 --ips_unit=samples/sec"
eval
$analysis_cmd
}
function
_kill_process
(){
kill
-9
`
ps
-ef
|grep
'python3.7'
|awk
'{print $2}'
`
}
_set_params
$@
_train
_analysis_log
_kill_process
\ No newline at end of file
benchmark/run_det.sh
浏览文件 @
a434b133
...
...
@@ -3,11 +3,11 @@
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
python3.7
-m
pip
install
-r
requirements.txt
# 2 拷贝该模型需要数据、预训练模型
wget
-
c
-p
./t
ain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
&&
cd
train_data
&&
tar
xf icdar2015.tar
&&
cd
../
wget
-
c
-p
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
wget
-
P
./tr
ain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
&&
cd
train_data
&&
tar
xf icdar2015.tar
&&
cd
../
wget
-
P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
model_mode_list
=(
det_res18_db_v2.0 det_r50_vd_east
)
model_mode_list
=(
det_res18_db_v2.0 det_r50_vd_east
det_r50_vd_pse
)
fp_item_list
=(
fp32
)
bs_list
=(
8 16
)
for
model_mode
in
${
model_mode_list
[@]
}
;
do
...
...
@@ -15,11 +15,11 @@ for model_mode in ${model_mode_list[@]}; do
for
bs_item
in
${
bs_list
[@]
}
;
do
echo
"index is speed, 1gpus, begin,
${
model_name
}
"
run_mode
=
sp
CUDA_VISIBLE_DEVICES
=
0 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
10
${
model_mode
}
# (5min)
CUDA_VISIBLE_DEVICES
=
0 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
2
${
model_mode
}
# (5min)
sleep
60
echo
"index is speed, 8gpus, run_mode is multi_process, begin,
${
model_name
}
"
run_mode
=
mp
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
10
${
model_mode
}
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
2
${
model_mode
}
sleep
60
done
done
...
...
test_tipc/docs/install.md
浏览文件 @
a434b133
## 环境配置
## 1. 环境准备
本教程适用于PTDN目录下基础功能测试的运行环境搭建。
推荐环境:
-
CUDA 10.1
-
CUDNN 7.6
-
TensorRT 6.1.0.5 / 7.1
-
CUDA 10.1/10.2
-
CUDNN 7.6/cudnn8.1
-
TensorRT 6.1.0.5 / 7.1 / 7.2
环境配置可以选择docker镜像安装,或者在本地环境Python搭建环境。推荐使用docker镜像安装,避免不必要的环境配置。
## 2. Docker 镜像安装
推荐docker镜像安装,按照如下命令创建镜像,当前目录映射到镜像中的
`/paddle`
目录下
```
...
...
@@ -16,7 +18,79 @@ cd /paddle
# 安装带TRT的paddle
pip3.7 install https://paddle-wheel.bj.bcebos.com/with-trt/2.1.3/linux-gpu-cuda10.1-cudnn7-mkl-gcc8.2-trt6-avx/paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl
```
## 3 Python 环境构建
非docker环境下,环境配置比较灵活,推荐环境组合配置:
-
CUDA10.1 + CUDNN7.6 + TensorRT 6
-
CUDA10.2 + CUDNN8.1 + TensorRT 7
-
CUDA11.1 + CUDNN8.1 + TensorRT 7
下面以 CUDA10.2 + CUDNN8.1 + TensorRT 7 配置为例,介绍环境配置的流程。
### 3.1 安装CUDNN
如果当前环境满足CUDNN版本的要求,可以跳过此步骤。
以CUDNN8.1 安装安装为例,安装步骤如下,首先下载CUDNN,从
[
Nvidia官网
](
https://developer.nvidia.com/rdp/cudnn-archive
)
下载CUDNN8.1版本,下载符合当前系统版本的三个deb文件,分别是:
-
cuDNN Runtime Library ,如:libcudnn8_8.1.0.77-1+cuda10.2_amd64.deb
-
cuDNN Developer Library ,如:libcudnn8-dev_8.1.0.77-1+cuda10.2_amd64.deb
-
cuDNN Code Samples,如:libcudnn8-samples_8.1.0.77-1+cuda10.2_amd64.deb
deb安装可以参考
[
官方文档
](
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-deb
)
,安装方式如下
```
# x.x.x表示下载的版本号
# $HOME为工作目录
sudo dpkg -i libcudnn8_x.x.x-1+cudax.x_arm64.deb
sudo dpkg -i libcudnn8-dev_8.x.x.x-1+cudax.x_arm64.deb
sudo dpkg -i libcudnn8-samples_8.x.x.x-1+cudax.x_arm64.deb
# 验证是否正确安装
cp -r /usr/src/cudnn_samples_v8/ $HOME
cd $HOME/cudnn_samples_v8/mnistCUDNN
# 编译
make clean && make
./mnistCUDNN
```
如果运行mnistCUDNN完后提示运行成功,则表示安装成功。如果运行后出现freeimage相关的报错,需要按照提示安装freeimage库:
```
sudo apt-get install libfreeimage-dev
sudo apt-get install libfreeimage
```
### 3.2 安装TensorRT
首先,从
[
Nvidia官网TensorRT板块
](
https://developer.nvidia.com/tensorrt-getting-started
)
下载TensorRT,这里选择7.1.3.4版本的TensorRT,注意选择适合自己系统版本和CUDA版本的TensorRT,另外建议下载TAR package的安装包。
以Ubuntu16.04+CUDA10.2为例,下载并解压后可以参考
[
官方文档
](
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-713/install-guide/index.html#installing-tar
)
的安装步骤,按照如下步骤安装:
```
# 以下安装命令中 '${version}' 为下载的TensorRT版本,如7.1.3.4
# 设置环境变量,<TensorRT-${version}/lib> 为解压后的TensorRT的lib目录
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<TensorRT-${version}/lib>
# 安装TensorRT
cd TensorRT-${version}/python
pip3.7 install tensorrt-*-cp3x-none-linux_x86_64.whl
# 安装graphsurgeon
cd TensorRT-${version}/graphsurgeon
```
### 3.3 安装PaddlePaddle
下载支持TensorRT版本的Paddle安装包,注意安装包的TensorRT版本需要与本地TensorRT一致,下载
[
链接
](
https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#python
)
选择下载 linux-cuda10.2-trt7-gcc8.2 Python3.7版本的Paddle:
```
# 从下载链接中可以看到是paddle2.1.1-cuda10.2-cudnn8.1版本
wget https://paddle-wheel.bj.bcebos.com/with-trt/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl
pip3.7 install -U paddlepaddle_gpu-2.1.1-cp37-cp37m-linux_x86_64.whl
```
## 4. 安装PaddleOCR依赖
```
# 安装AutoLog
git clone https://github.com/LDOUBLEV/AutoLog
cd AutoLog
...
...
@@ -24,7 +98,6 @@ pip3.7 install -r requirements.txt
python3.7 setup.py bdist_wheel
pip3.7 install ./dist/auto_log-1.0.0-py3-none-any.whl
# 下载OCR代码
cd ../
git clone https://github.com/PaddlePaddle/PaddleOCR
...
...
@@ -45,4 +118,4 @@ A. 问题一般是当前安装paddle版本带TRT,但是本地环境找不到Te
```
export LD_LIBRARY_PATH=/usr/local/python3.7.0/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/paddle/package/TensorRT-6.0.1.5/lib
```
或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的T
RT
。
或者问题是下载的TensorRT版本和当前paddle中编译的TRT版本不匹配,需要下载版本相符的T
ensorRT重新安装
。
test_tipc/docs/test_train_inference_python.md
浏览文件 @
a434b133
...
...
@@ -51,37 +51,37 @@
`test_train_inference_python.sh`
包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
-
模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
-
模式1:lite_train_
lite_
infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```
shell
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'lite_train_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'lite_train_infer'
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'lite_train_
lite_
infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'lite_train_
lite_
infer'
```
-
模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
-
模式2:
lite_train_
whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```
shell
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'whole_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'whole_infer'
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'
lite_train_
whole_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'
lite_train_
whole_infer'
```
-
模式3:infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
-
模式3:
whole_
infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```
shell
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'infer'
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'
whole_
infer'
# 用法1:
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'
whole_
infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'infer'
'1'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'
whole_
infer'
'1'
```
-
模式4:whole_train_infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
-
模式4:whole_train_
whole_
infer,CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
```
shell
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'whole_train_infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'whole_train_infer'
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'whole_train_
whole_
infer'
bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'whole_train_
whole_
infer'
```
-
模式5:klquant_infer,测试离线量化;
-
模式5:klquant_
whole_
infer,测试离线量化;
```
shell
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'klquant_infer'
bash test_tipc/test_train_inference_python.sh test_tipc/configs/ppocr_det_mobile_params.txt
'klquant_infer'
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt
'klquant_
whole_
infer'
bash test_tipc/test_train_inference_python.sh test_tipc/configs/ppocr_det_mobile_params.txt
'klquant_
whole_
infer'
```
...
...
test_tipc/prepare.sh
浏览文件 @
a434b133
#!/bin/bash
FILENAME
=
$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer',
# 'cpp_infer', 'serving_infer', 'klquant_infer', 'lite_infer']
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
# 'whole_infer', 'klquant_whole_infer',
# 'cpp_infer', 'serving_infer', 'lite_infer']
MODE
=
$2
...
...
@@ -34,7 +35,7 @@ trainer_list=$(func_parser_value "${lines[14]}")
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE
=
$2
if
[
${
MODE
}
=
"lite_train_infer"
]
;
then
if
[
${
MODE
}
=
"lite_train_
lite_
infer"
]
;
then
# pretrain lite train data
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
...
...
@@ -54,7 +55,7 @@ if [ ${MODE} = "lite_train_infer" ];then
ln
-s
./icdar2015_lite ./icdar2015
cd
../
cd
./inference
&&
tar
xf rec_inference.tar
&&
cd
../
elif
[
${
MODE
}
=
"whole_train_infer"
]
;
then
elif
[
${
MODE
}
=
"whole_train_
whole_
infer"
]
;
then
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
rm
-rf
./train_data/icdar2015
rm
-rf
./train_data/ic15_data
...
...
@@ -65,7 +66,7 @@ elif [ ${MODE} = "whole_train_infer" ];then
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar
cd
./pretrain_models/
&&
tar
xf ch_PP-OCRv2_det_distill_train.tar
&&
cd
../
fi
elif
[
${
MODE
}
=
"whole_infer"
]
;
then
elif
[
${
MODE
}
=
"
lite_train_
whole_infer"
]
;
then
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
rm
-rf
./train_data/icdar2015
rm
-rf
./train_data/ic15_data
...
...
@@ -78,7 +79,7 @@ elif [ ${MODE} = "whole_infer" ];then
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar
cd
./pretrain_models/
&&
tar
xf ch_PP-OCRv2_det_distill_train.tar
&&
cd
../
fi
elif
[
${
MODE
}
=
"infer"
]
;
then
elif
[
${
MODE
}
=
"
whole_
infer"
]
;
then
if
[
${
model_name
}
=
"ocr_det"
]
;
then
eval_model_name
=
"ch_ppocr_mobile_v2.0_det_train"
rm
-rf
./train_data/icdar2015
...
...
@@ -112,13 +113,16 @@ elif [ ${MODE} = "infer" ];then
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf rec_inference.tar
&&
cd
../
fi
elif
[
${
model_name
}
=
"PPOCRv2_ocr_det"
]
;
then
eval_model_name
=
"ch_PP-OCRv2_det_infer"
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
cd
./inference
&&
tar
xf
${
eval_model_name
}
.tar
&&
tar
xf ch_det_data_50.tar
&&
cd
../
fi
elif
[
${
MODE
}
=
"klquant_infer"
]
;
then
elif
[
${
MODE
}
=
"klquant_whole_infer"
]
;
then
if
[
${
model_name
}
=
"ocr_det"
]
;
then
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
wget
-nc
-P
./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
...
...
test_tipc/test_train_inference_python.sh
浏览文件 @
a434b133
...
...
@@ -2,7 +2,7 @@
source
tests/common_func.sh
FILENAME
=
$1
# MODE be one of ['lite_train_
infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant
_infer']
# MODE be one of ['lite_train_
lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer', 'whole_infer', 'klquant_whole
_infer']
MODE
=
$2
dataline
=
$(
awk
'NR==1, NR==51{print}'
$FILENAME
)
...
...
@@ -89,7 +89,7 @@ infer_key1=$(func_parser_key "${lines[50]}")
infer_value1
=
$(
func_parser_value
"
${
lines
[50]
}
"
)
# parser klquant_infer
if
[
${
MODE
}
=
"klquant_infer"
]
;
then
if
[
${
MODE
}
=
"klquant_
whole_
infer"
]
;
then
dataline
=
$(
awk
'NR==82, NR==98{print}'
$FILENAME
)
lines
=(
${
dataline
}
)
# parser inference model
...
...
@@ -203,7 +203,7 @@ function func_inference(){
done
}
if
[
${
MODE
}
=
"
infer"
]
||
[
${
MODE
}
=
"klquant
_infer"
]
;
then
if
[
${
MODE
}
=
"
whole_infer"
]
||
[
${
MODE
}
=
"klquant_whole
_infer"
]
;
then
GPUID
=
$3
if
[
${#
GPUID
}
-le
0
]
;
then
env
=
" "
...
...
tools/program.py
浏览文件 @
a434b133
...
...
@@ -212,15 +212,15 @@ def train(config,
for
epoch
in
range
(
start_epoch
,
epoch_num
+
1
):
train_dataloader
=
build_dataloader
(
config
,
'Train'
,
device
,
logger
,
seed
=
epoch
)
train_batch_cost
=
0.0
train_reader_cost
=
0.0
batch_sum
=
0
batch_start
=
time
.
time
()
train_run_cost
=
0.0
total_samples
=
0
reader_start
=
time
.
time
()
max_iter
=
len
(
train_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
train_dataloader
)
for
idx
,
batch
in
enumerate
(
train_dataloader
):
profiler
.
add_profiler_step
(
profiler_options
)
train_reader_cost
+=
time
.
time
()
-
batch
_start
train_reader_cost
+=
time
.
time
()
-
reader
_start
if
idx
>=
max_iter
:
break
lr
=
optimizer
.
get_lr
()
...
...
@@ -228,6 +228,7 @@ def train(config,
if
use_srn
:
model_average
=
True
train_start
=
time
.
time
()
# use amp
if
scaler
:
with
paddle
.
amp
.
auto_cast
():
...
...
@@ -252,8 +253,8 @@ def train(config,
optimizer
.
step
()
optimizer
.
clear_grad
()
train_
batch_cost
+=
time
.
time
()
-
batch
_start
batch_sum
+=
len
(
images
)
train_
run_cost
+=
time
.
time
()
-
train
_start
total_samples
+=
len
(
images
)
if
not
isinstance
(
lr_scheduler
,
float
):
lr_scheduler
.
step
()
...
...
@@ -284,12 +285,13 @@ def train(config,
logs
=
train_stats
.
log
()
strs
=
'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'
.
format
(
epoch
,
epoch_num
,
global_step
,
logs
,
train_reader_cost
/
print_batch_step
,
train_batch_cost
/
print_batch_step
,
batch_sum
,
batch_sum
/
train_batch_cost
)
print_batch_step
,
(
train_reader_cost
+
train_run_cost
)
/
print_batch_step
,
total_samples
,
total_samples
/
(
train_reader_cost
+
train_run_cost
))
logger
.
info
(
strs
)
train_batch_cost
=
0.0
train_reader_cost
=
0.0
batch_sum
=
0
train_run_cost
=
0.0
total_samples
=
0
# eval
if
global_step
>
start_eval_step
and
\
(
global_step
-
start_eval_step
)
%
eval_batch_step
==
0
and
dist
.
get_rank
()
==
0
:
...
...
@@ -342,7 +344,7 @@ def train(config,
global_step
)
global_step
+=
1
optimizer
.
clear_grad
()
batch
_start
=
time
.
time
()
reader
_start
=
time
.
time
()
if
dist
.
get_rank
()
==
0
:
save_model
(
model
,
...
...
@@ -383,7 +385,11 @@ def eval(model,
with
paddle
.
no_grad
():
total_frame
=
0.0
total_time
=
0.0
pbar
=
tqdm
(
total
=
len
(
valid_dataloader
),
desc
=
'eval model:'
)
pbar
=
tqdm
(
total
=
len
(
valid_dataloader
),
desc
=
'eval model:'
,
position
=
0
,
leave
=
True
)
max_iter
=
len
(
valid_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
valid_dataloader
)
for
idx
,
batch
in
enumerate
(
valid_dataloader
):
...
...
@@ -452,8 +458,6 @@ def get_center(model, eval_dataloader, post_process_class):
batch
=
[
item
.
numpy
()
for
item
in
batch
]
# Obtain usable results from post-processing methods
total_time
+=
time
.
time
()
-
start
# Evaluate the results of the current batch
post_result
=
post_process_class
(
preds
,
batch
[
1
])
#update char_center
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录