Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
bbf4625e
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bbf4625e
编写于
10月 28, 2021
作者:
M
MissPenguin
提交者:
GitHub
10月 28, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4468 from WenmuZhou/pse_benckmark
add pse to benchmark
上级
499593c4
46c170bc
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
37 addition
and
29 deletion
+37
-29
benchmark/readme.md
benchmark/readme.md
+2
-6
benchmark/run_benchmark_det.sh
benchmark/run_benchmark_det.sh
+12
-6
benchmark/run_det.sh
benchmark/run_det.sh
+5
-5
tools/program.py
tools/program.py
+18
-12
未找到文件。
benchmark/readme.md
浏览文件 @
bbf4625e
# PaddleOCR DB/EAST 算法训练benchmark测试
# PaddleOCR DB/EAST
/PSE
算法训练benchmark测试
PaddleOCR/benchmark目录下的文件用于获取并分析训练日志。
训练采用icdar2015数据集,包括1000张训练图像和500张测试图像。模型配置采用resnet18_vd作为backbone,分别训练batch_size=8和batch_size=16的情况。
...
...
@@ -18,7 +18,7 @@ run_det.sh 执行方式如下:
```
# cd PaddleOCR/
bash benchmark/run_det.sh
bash benchmark/run_det.sh
```
以DB为例,将得到四个日志文件,如下:
...
...
@@ -28,7 +28,3 @@ det_res18_db_v2.0_sp_bs8_fp32_1
det_res18_db_v2.0_mp_bs16_fp32_1
det_res18_db_v2.0_mp_bs8_fp32_1
```
benchmark/run_benchmark_det.sh
浏览文件 @
bbf4625e
...
...
@@ -6,7 +6,7 @@ function _set_params(){
run_mode
=
${
1
:-
"sp"
}
# 单卡sp|多卡mp
batch_size
=
${
2
:-
"64"
}
fp_item
=
${
3
:-
"fp32"
}
# fp32|fp16
max_iter
=
${
4
:-
"
50
0"
}
# 可选,如果需要修改代码提前中断
max_iter
=
${
4
:-
"
1
0"
}
# 可选,如果需要修改代码提前中断
model_name
=
${
5
:-
"model_name"
}
run_log_path
=
${
TRAIN_LOG_DIR
:-
$(
pwd
)
}
# TRAIN_LOG_DIR 后续QA设置该参数
...
...
@@ -20,7 +20,7 @@ function _train(){
echo
"Train on
${
num_gpu_devices
}
GPUs"
echo
"current CUDA_VISIBLE_DEVICES=
$CUDA_VISIBLE_DEVICES
, gpus=
$num_gpu_devices
, batch_size=
$batch_size
"
train_cmd
=
"-c configs/det/
${
model_name
}
.yml -o Train.loader.batch_size_per_card=
${
batch_size
}
Global.epoch_num=
${
max_iter
}
"
train_cmd
=
"-c configs/det/
${
model_name
}
.yml -o Train.loader.batch_size_per_card=
${
batch_size
}
Global.epoch_num=
${
max_iter
}
Global.eval_batch_step=[0,20000] Global.print_batch_step=2
"
case
${
run_mode
}
in
sp
)
train_cmd
=
"python3.7 tools/train.py "
${
train_cmd
}
""
...
...
@@ -39,18 +39,24 @@ function _train(){
echo
-e
"
${
model_name
}
, SUCCESS"
export
job_fail_flag
=
0
fi
kill
-9
`
ps
-ef
|grep
'python3.7'
|awk
'{print $2}'
`
if
[
$run_mode
=
"mp"
-a
-d
mylog
]
;
then
rm
${
log_file
}
cp
mylog/workerlog.0
${
log_file
}
fi
}
# run log analysis
analysis_cmd
=
"python3.7 benchmark/analysis.py --filename
${
log_file
}
--mission_name
${
model_name
}
--run_mode
${
mode
}
--direction_id 0 --keyword 'ips:' --base_batch_size
${
batch_szi
e
}
--skip_steps 1 --gpu_num
${
num_gpu_devices
}
--index 1 --model_mode=-1 --ips_unit=samples/sec"
function
_analysis_log
(){
analysis_cmd
=
"python3.7 benchmark/analysis.py --filename
${
log_file
}
--mission_name
${
model_name
}
--run_mode
${
run_mode
}
--direction_id 0 --keyword 'ips:' --base_batch_size
${
batch_siz
e
}
--skip_steps 1 --gpu_num
${
num_gpu_devices
}
--index 1 --model_mode=-1 --ips_unit=samples/sec"
eval
$analysis_cmd
}
function
_kill_process
(){
kill
-9
`
ps
-ef
|grep
'python3.7'
|awk
'{print $2}'
`
}
_set_params
$@
_train
_analysis_log
_kill_process
\ No newline at end of file
benchmark/run_det.sh
浏览文件 @
bbf4625e
...
...
@@ -3,11 +3,11 @@
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
python3.7
-m
pip
install
-r
requirements.txt
# 2 拷贝该模型需要数据、预训练模型
wget
-
c
-p
./t
ain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
&&
cd
train_data
&&
tar
xf icdar2015.tar
&&
cd
../
wget
-
c
-p
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
wget
-
P
./tr
ain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
&&
cd
train_data
&&
tar
xf icdar2015.tar
&&
cd
../
wget
-
P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
model_mode_list
=(
det_res18_db_v2.0 det_r50_vd_east
)
model_mode_list
=(
det_res18_db_v2.0 det_r50_vd_east
det_r50_vd_pse
)
fp_item_list
=(
fp32
)
bs_list
=(
8 16
)
for
model_mode
in
${
model_mode_list
[@]
}
;
do
...
...
@@ -15,11 +15,11 @@ for model_mode in ${model_mode_list[@]}; do
for
bs_item
in
${
bs_list
[@]
}
;
do
echo
"index is speed, 1gpus, begin,
${
model_name
}
"
run_mode
=
sp
CUDA_VISIBLE_DEVICES
=
0 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
10
${
model_mode
}
# (5min)
CUDA_VISIBLE_DEVICES
=
0 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
2
${
model_mode
}
# (5min)
sleep
60
echo
"index is speed, 8gpus, run_mode is multi_process, begin,
${
model_name
}
"
run_mode
=
mp
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
10
${
model_mode
}
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh
${
run_mode
}
${
bs_item
}
${
fp_item
}
2
${
model_mode
}
sleep
60
done
done
...
...
tools/program.py
浏览文件 @
bbf4625e
...
...
@@ -212,15 +212,15 @@ def train(config,
for
epoch
in
range
(
start_epoch
,
epoch_num
+
1
):
train_dataloader
=
build_dataloader
(
config
,
'Train'
,
device
,
logger
,
seed
=
epoch
)
train_batch_cost
=
0.0
train_reader_cost
=
0.0
batch_sum
=
0
batch_start
=
time
.
time
()
train_run_cost
=
0.0
total_samples
=
0
reader_start
=
time
.
time
()
max_iter
=
len
(
train_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
train_dataloader
)
for
idx
,
batch
in
enumerate
(
train_dataloader
):
profiler
.
add_profiler_step
(
profiler_options
)
train_reader_cost
+=
time
.
time
()
-
batch
_start
train_reader_cost
+=
time
.
time
()
-
reader
_start
if
idx
>=
max_iter
:
break
lr
=
optimizer
.
get_lr
()
...
...
@@ -228,6 +228,7 @@ def train(config,
if
use_srn
:
model_average
=
True
train_start
=
time
.
time
()
# use amp
if
scaler
:
with
paddle
.
amp
.
auto_cast
():
...
...
@@ -252,8 +253,8 @@ def train(config,
optimizer
.
step
()
optimizer
.
clear_grad
()
train_
batch_cost
+=
time
.
time
()
-
batch
_start
batch_sum
+=
len
(
images
)
train_
run_cost
+=
time
.
time
()
-
train
_start
total_samples
+=
len
(
images
)
if
not
isinstance
(
lr_scheduler
,
float
):
lr_scheduler
.
step
()
...
...
@@ -284,12 +285,13 @@ def train(config,
logs
=
train_stats
.
log
()
strs
=
'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'
.
format
(
epoch
,
epoch_num
,
global_step
,
logs
,
train_reader_cost
/
print_batch_step
,
train_batch_cost
/
print_batch_step
,
batch_sum
,
batch_sum
/
train_batch_cost
)
print_batch_step
,
(
train_reader_cost
+
train_run_cost
)
/
print_batch_step
,
total_samples
,
total_samples
/
(
train_reader_cost
+
train_run_cost
))
logger
.
info
(
strs
)
train_batch_cost
=
0.0
train_reader_cost
=
0.0
batch_sum
=
0
train_run_cost
=
0.0
total_samples
=
0
# eval
if
global_step
>
start_eval_step
and
\
(
global_step
-
start_eval_step
)
%
eval_batch_step
==
0
and
dist
.
get_rank
()
==
0
:
...
...
@@ -342,7 +344,7 @@ def train(config,
global_step
)
global_step
+=
1
optimizer
.
clear_grad
()
batch
_start
=
time
.
time
()
reader
_start
=
time
.
time
()
if
dist
.
get_rank
()
==
0
:
save_model
(
model
,
...
...
@@ -383,7 +385,11 @@ def eval(model,
with
paddle
.
no_grad
():
total_frame
=
0.0
total_time
=
0.0
pbar
=
tqdm
(
total
=
len
(
valid_dataloader
),
desc
=
'eval model:'
)
pbar
=
tqdm
(
total
=
len
(
valid_dataloader
),
desc
=
'eval model:'
,
position
=
0
,
leave
=
True
)
max_iter
=
len
(
valid_dataloader
)
-
1
if
platform
.
system
(
)
==
"Windows"
else
len
(
valid_dataloader
)
for
idx
,
batch
in
enumerate
(
valid_dataloader
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录