predict_rec.py 12.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
L
LDOUBLEV 已提交
31
import tools.infer.benchmark_utils as benchmark_utils
W
WenmuZhou 已提交
32 33
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
34
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
35

W
WenmuZhou 已提交
36 37
logger = get_logger()

L
LDOUBLEV 已提交
38 39 40

class TextRecognizer(object):
    def __init__(self, args):
41
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
42
        self.character_type = args.rec_char_type
43
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
44
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
45 46
        postprocess_params = {
            'name': 'CTCLabelDecode',
T
tink2123 已提交
47
            "character_type": args.rec_char_type,
48
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
49
            "use_space_char": args.use_space_char
T
tink2123 已提交
50
        }
T
tink2123 已提交
51 52 53
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
54 55 56 57 58 59 60
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
61 62 63 64
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
65
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
66
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
67
            utility.create_predictor(args, 'rec', logger)
L
LDOUBLEV 已提交
68

L
LDOUBLEV 已提交
69 70
        self.rec_times = utility.Timer()

71
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
72
        imgC, imgH, imgW = self.rec_image_shape
73
        assert imgC == img.shape[2]
74
        if self.character_type == "ch":
T
tink2123 已提交
75
            imgW = int((32 * max_wh_ratio))
76
        h, w = img.shape[:2]
77 78 79 80 81
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
82
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
83 84 85 86 87 88 89 90
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
163 164
    def __call__(self, img_list):
        img_num = len(img_list)
165
        # Calculate the aspect ratio of all text bars
166 167 168
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
169
        # Sorting can speed up the recognition process
170
        indices = np.argsort(np.array(width_list))
L
LDOUBLEV 已提交
171
        self.rec_times.total_time.start()
172
        rec_res = [['', 0.0]] * img_num
173
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
174 175 176
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
177
            max_wh_ratio = 0
L
LDOUBLEV 已提交
178
            self.rec_times.preprocess_time.start()
L
LDOUBLEV 已提交
179
            for ino in range(beg_img_no, end_img_no):
180
                h, w = img_list[indices[ino]].shape[0:2]
181 182 183
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
184 185 186 187 188 189
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
L
LDOUBLEV 已提交
190 191
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
192 193 194 195 196 197 198 199 200
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
L
LDOUBLEV 已提交
201 202
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
L
LDOUBLEV 已提交
219 220
                self.rec_times.preprocess_time.end()
                self.rec_times.inference_time.start()
T
tink2123 已提交
221 222 223 224 225 226
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
L
LDOUBLEV 已提交
227
                self.rec_times.inference_time.end()
T
tink2123 已提交
228 229 230 231 232 233
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = {"predict": outputs[2]}
            else:
L
LDOUBLEV 已提交
234 235
                self.rec_times.preprocess_time.end()
                self.rec_times.inference_time.start()
T
tink2123 已提交
236 237 238 239 240 241 242 243
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = outputs[0]
L
LDOUBLEV 已提交
244 245
            self.rec_times.inference_time.end()
            self.rec_times.postprocess_time.start()
W
WenmuZhou 已提交
246 247 248
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
L
LDOUBLEV 已提交
249 250 251 252
            self.rec_times.postprocess_time.end()
            self.rec_times.img_num += int(norm_img_batch.shape[0])
        self.rec_times.total_time.end()
        return rec_res, self.rec_times.total_time.value()
L
LDOUBLEV 已提交
253 254


255
def main(args):
D
dyning 已提交
256
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
257 258 259
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
260 261 262 263 264 265 266 267 268
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    count = 0

    # warmup 10 times
    fake_img = np.random.uniform(-1, 1, [1, 32, 320, 3]).astype(np.float32)
    for i in range(10):
        dt_boxes, _ = text_recognizer(fake_img)

    for image_file in image_file_list:
L
LDOUBLEV 已提交
269 270 271
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
272 273 274 275 276
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    try:
        rec_res, _ = text_recognizer(img_list)
        if args.benchmark:
            cm, gm, gu = utility.get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu
            count += 1

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
    else:
        mems = None
    logger.info("The predict time about recognizer module is as follows: ")
    rec_time_dict = text_recognizer.rec_times.report(average=True)
    rec_model_name = args.rec_model_dir

    if args.benchmark:
        # construct log information
        model_info = {
            'model_name': args.rec_model_dir.split('/')[-1],
            'precision': args.precision
        }
        data_info = {
            'batch_size': args.rec_batch_num,
            'shape': 'dynamic_shape',
            'data_num': rec_time_dict['img_num']
        }
        perf_info = {
            'preprocess_time_s': rec_time_dict['preprocess_time'],
            'inference_time_s': rec_time_dict['inference_time'],
            'postprocess_time_s': rec_time_dict['postprocess_time'],
            'total_time_s': rec_time_dict['total_time']
        }
        benchmark_log = benchmark_utils.PaddleInferBenchmark(
            text_recognizer.config, model_info, data_info, perf_info, mems)
        benchmark_log("Rec")
325 326 327 328


if __name__ == "__main__":
    main(utility.parse_args())