Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleOCR
提交
453c6f68
P
PaddleOCR
项目概览
s920243400
/
PaddleOCR
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleOCR
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
453c6f68
编写于
11月 12, 2020
作者:
W
WenmuZhou
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
识别模型inference
上级
4d44b230
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
18 addition
and
58 deletion
+18
-58
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+18
-58
未找到文件。
tools/infer/predict_rec.py
浏览文件 @
453c6f68
...
...
@@ -26,34 +26,27 @@ import time
import
paddle.fluid
as
fluid
import
tools.infer.utility
as
utility
from
ppocr.
utils.utility
import
initial_logger
logger
=
initial_logger
()
from
ppocr.
postprocess
import
build_post_process
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.character
import
CharacterOps
class
TextRecognizer
(
object
):
def
__init__
(
self
,
args
):
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
=
\
utility
.
create_predictor
(
args
,
mode
=
"rec"
)
self
.
rec_image_shape
=
[
int
(
v
)
for
v
in
args
.
rec_image_shape
.
split
(
","
)]
self
.
character_type
=
args
.
rec_char_type
self
.
rec_batch_num
=
args
.
rec_batch_num
self
.
rec_algorithm
=
args
.
rec_algorithm
self
.
use_zero_copy_run
=
args
.
use_zero_copy_run
char_ops_params
=
{
postprocess_params
=
{
'name'
:
'CTCLabelDecode'
,
"character_type"
:
args
.
rec_char_type
,
"character_dict_path"
:
args
.
rec_char_dict_path
,
"use_space_char"
:
args
.
use_space_char
,
"max_text_length"
:
args
.
max_text_length
"use_space_char"
:
args
.
use_space_char
}
if
self
.
rec_algorithm
!=
"RARE"
:
char_ops_params
[
'loss_type'
]
=
'ctc'
self
.
loss_type
=
'ctc'
else
:
char_ops_params
[
'loss_type'
]
=
'attention'
self
.
loss_type
=
'attention'
self
.
char_ops
=
CharacterOps
(
char_ops_params
)
self
.
postprocess_op
=
build_post_process
(
postprocess_params
)
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
=
\
utility
.
create_predictor
(
args
,
'rec'
,
logger
)
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
imgC
,
imgH
,
imgW
=
self
.
rec_image_shape
...
...
@@ -112,48 +105,14 @@ class TextRecognizer(object):
else
:
norm_img_batch
=
fluid
.
core
.
PaddleTensor
(
norm_img_batch
)
self
.
predictor
.
run
([
norm_img_batch
])
if
self
.
loss_type
==
"ctc"
:
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
rec_idx_lod
=
self
.
output_tensors
[
0
].
lod
()[
0
]
predict_batch
=
self
.
output_tensors
[
1
].
copy_to_cpu
()
predict_lod
=
self
.
output_tensors
[
1
].
lod
()[
0
]
elapse
=
time
.
time
()
-
starttime
predict_time
+=
elapse
for
rno
in
range
(
len
(
rec_idx_lod
)
-
1
):
beg
=
rec_idx_lod
[
rno
]
end
=
rec_idx_lod
[
rno
+
1
]
rec_idx_tmp
=
rec_idx_batch
[
beg
:
end
,
0
]
preds_text
=
self
.
char_ops
.
decode
(
rec_idx_tmp
)
beg
=
predict_lod
[
rno
]
end
=
predict_lod
[
rno
+
1
]
probs
=
predict_batch
[
beg
:
end
,
:]
ind
=
np
.
argmax
(
probs
,
axis
=
1
)
blank
=
probs
.
shape
[
1
]
valid_ind
=
np
.
where
(
ind
!=
(
blank
-
1
))[
0
]
if
len
(
valid_ind
)
==
0
:
continue
score
=
np
.
mean
(
probs
[
valid_ind
,
ind
[
valid_ind
]])
# rec_res.append([preds_text, score])
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
[
preds_text
,
score
]
else
:
rec_idx_batch
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
predict_batch
=
self
.
output_tensors
[
1
].
copy_to_cpu
()
elapse
=
time
.
time
()
-
starttime
predict_time
+=
elapse
for
rno
in
range
(
len
(
rec_idx_batch
)):
end_pos
=
np
.
where
(
rec_idx_batch
[
rno
,
:]
==
1
)[
0
]
if
len
(
end_pos
)
<=
1
:
preds
=
rec_idx_batch
[
rno
,
1
:]
score
=
np
.
mean
(
predict_batch
[
rno
,
1
:])
else
:
preds
=
rec_idx_batch
[
rno
,
1
:
end_pos
[
1
]]
score
=
np
.
mean
(
predict_batch
[
rno
,
1
:
end_pos
[
1
]])
preds_text
=
self
.
char_ops
.
decode
(
preds
)
# rec_res.append([preds_text, score])
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
[
preds_text
,
score
]
return
rec_res
,
predict_time
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
preds
=
outputs
[
0
]
rec_res
=
self
.
postprocess_op
(
preds
)
elapse
=
time
.
time
()
-
starttime
return
rec_res
,
elapse
def
main
(
args
):
...
...
@@ -183,9 +142,10 @@ def main(args):
exit
()
for
ino
in
range
(
len
(
img_list
)):
print
(
"Predicts of %s:%s"
%
(
valid_image_file_list
[
ino
],
rec_res
[
ino
]))
print
(
"Total predict time for %d images
:
%.3f"
%
print
(
"Total predict time for %d images
, cost:
%.3f"
%
(
len
(
img_list
),
predict_time
))
if
__name__
==
"__main__"
:
logger
=
get_logger
()
main
(
utility
.
parse_args
())
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录