random_crop_data.py 7.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/random_crop_data.py
"""
W
WenmuZhou 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2
import random


def is_poly_in_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
        return False
    if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
        return False
    return True


def is_poly_outside_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
        return True
    if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
        return True
    return False


def split_regions(axis):
    regions = []
    min_axis = 0
    for i in range(1, axis.shape[0]):
        if axis[i] != axis[i - 1] + 1:
            region = axis[min_axis:i]
            min_axis = i
            regions.append(region)
    return regions


def random_select(axis, max_size):
    xx = np.random.choice(axis, size=2)
    xmin = np.min(xx)
    xmax = np.max(xx)
    xmin = np.clip(xmin, 0, max_size - 1)
    xmax = np.clip(xmax, 0, max_size - 1)
    return xmin, xmax


def region_wise_random_select(regions, max_size):
    selected_index = list(np.random.choice(len(regions), 2))
    selected_values = []
    for index in selected_index:
        axis = regions[index]
        xx = int(np.random.choice(axis, size=1))
        selected_values.append(xx)
    xmin = min(selected_values)
    xmax = max(selected_values)
    return xmin, xmax


def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
    h, w, _ = im.shape
    h_array = np.zeros(h, dtype=np.int32)
    w_array = np.zeros(w, dtype=np.int32)
    for points in text_polys:
        points = np.round(points, decimals=0).astype(np.int32)
        minx = np.min(points[:, 0])
        maxx = np.max(points[:, 0])
        w_array[minx:maxx] = 1
        miny = np.min(points[:, 1])
        maxy = np.max(points[:, 1])
        h_array[miny:maxy] = 1
    # ensure the cropped area not across a text
    h_axis = np.where(h_array == 0)[0]
    w_axis = np.where(w_array == 0)[0]

    if len(h_axis) == 0 or len(w_axis) == 0:
        return 0, 0, w, h

    h_regions = split_regions(h_axis)
    w_regions = split_regions(w_axis)

    for i in range(max_tries):
        if len(w_regions) > 1:
            xmin, xmax = region_wise_random_select(w_regions, w)
        else:
            xmin, xmax = random_select(w_axis, w)
        if len(h_regions) > 1:
            ymin, ymax = region_wise_random_select(h_regions, h)
        else:
            ymin, ymax = random_select(h_axis, h)

        if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
            # area too small
            continue
        num_poly_in_rect = 0
        for poly in text_polys:
            if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
                                        ymax - ymin):
                num_poly_in_rect += 1
                break

        if num_poly_in_rect > 0:
            return xmin, ymin, xmax - xmin, ymax - ymin

    return 0, 0, w, h


class EastRandomCropData(object):
    def __init__(self,
                 size=(640, 640),
                 max_tries=10,
                 min_crop_side_ratio=0.1,
                 keep_ratio=True,
                 **kwargs):
        self.size = size
        self.max_tries = max_tries
        self.min_crop_side_ratio = min_crop_side_ratio
        self.keep_ratio = keep_ratio

    def __call__(self, data):
        img = data['image']
        text_polys = data['polys']
        ignore_tags = data['ignore_tags']
        texts = data['texts']
        all_care_polys = [
            text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
        ]
        # 计算crop区域
        crop_x, crop_y, crop_w, crop_h = crop_area(
            img, all_care_polys, self.min_crop_side_ratio, self.max_tries)
        # crop 图片 保持比例填充
        scale_w = self.size[0] / crop_w
        scale_h = self.size[1] / crop_h
        scale = min(scale_w, scale_h)
        h = int(crop_h * scale)
        w = int(crop_w * scale)
        if self.keep_ratio:
            padimg = np.zeros((self.size[1], self.size[0], img.shape[2]),
                              img.dtype)
            padimg[:h, :w] = cv2.resize(
                img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
            img = padimg
        else:
            img = cv2.resize(
                img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
                tuple(self.size))
        # crop 文本框
        text_polys_crop = []
        ignore_tags_crop = []
        texts_crop = []
        for poly, text, tag in zip(text_polys, texts, ignore_tags):
            poly = ((poly - (crop_x, crop_y)) * scale).tolist()
            if not is_poly_outside_rect(poly, 0, 0, w, h):
                text_polys_crop.append(poly)
                ignore_tags_crop.append(tag)
                texts_crop.append(text)
        data['image'] = img
        data['polys'] = np.array(text_polys_crop)
        data['ignore_tags'] = ignore_tags_crop
        data['texts'] = texts_crop
        return data


class PSERandomCrop(object):
    def __init__(self, size, **kwargs):
        self.size = size

    def __call__(self, data):
        imgs = data['imgs']

        h, w = imgs[0].shape[0:2]
        th, tw = self.size
        if w == tw and h == th:
            return imgs

        # label中存在文本实例,并且按照概率进行裁剪,使用threshold_label_map控制
        if np.max(imgs[2]) > 0 and random.random() > 3 / 8:
            # 文本实例的左上角点
            tl = np.min(np.where(imgs[2] > 0), axis=1) - self.size
            tl[tl < 0] = 0
            # 文本实例的右下角点
            br = np.max(np.where(imgs[2] > 0), axis=1) - self.size
            br[br < 0] = 0
            # 保证选到右下角点时,有足够的距离进行crop
            br[0] = min(br[0], h - th)
            br[1] = min(br[1], w - tw)

            for _ in range(50000):
                i = random.randint(tl[0], br[0])
                j = random.randint(tl[1], br[1])
                # 保证shrink_label_map有文本
                if imgs[1][i:i + th, j:j + tw].sum() <= 0:
                    continue
                else:
                    break
        else:
            i = random.randint(0, h - th)
            j = random.randint(0, w - tw)

        # return i, j, th, tw
        for idx in range(len(imgs)):
            if len(imgs[idx].shape) == 3:
                imgs[idx] = imgs[idx][i:i + th, j:j + tw, :]
            else:
                imgs[idx] = imgs[idx][i:i + th, j:j + tw]
        data['imgs'] = imgs
        return data