# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/random_crop_data.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import cv2 import random def is_poly_in_rect(poly, x, y, w, h): poly = np.array(poly) if poly[:, 0].min() < x or poly[:, 0].max() > x + w: return False if poly[:, 1].min() < y or poly[:, 1].max() > y + h: return False return True def is_poly_outside_rect(poly, x, y, w, h): poly = np.array(poly) if poly[:, 0].max() < x or poly[:, 0].min() > x + w: return True if poly[:, 1].max() < y or poly[:, 1].min() > y + h: return True return False def split_regions(axis): regions = [] min_axis = 0 for i in range(1, axis.shape[0]): if axis[i] != axis[i - 1] + 1: region = axis[min_axis:i] min_axis = i regions.append(region) return regions def random_select(axis, max_size): xx = np.random.choice(axis, size=2) xmin = np.min(xx) xmax = np.max(xx) xmin = np.clip(xmin, 0, max_size - 1) xmax = np.clip(xmax, 0, max_size - 1) return xmin, xmax def region_wise_random_select(regions, max_size): selected_index = list(np.random.choice(len(regions), 2)) selected_values = [] for index in selected_index: axis = regions[index] xx = int(np.random.choice(axis, size=1)) selected_values.append(xx) xmin = min(selected_values) xmax = max(selected_values) return xmin, xmax def crop_area(im, text_polys, min_crop_side_ratio, max_tries): h, w, _ = im.shape h_array = np.zeros(h, dtype=np.int32) w_array = np.zeros(w, dtype=np.int32) for points in text_polys: points = np.round(points, decimals=0).astype(np.int32) minx = np.min(points[:, 0]) maxx = np.max(points[:, 0]) w_array[minx:maxx] = 1 miny = np.min(points[:, 1]) maxy = np.max(points[:, 1]) h_array[miny:maxy] = 1 # ensure the cropped area not across a text h_axis = np.where(h_array == 0)[0] w_axis = np.where(w_array == 0)[0] if len(h_axis) == 0 or len(w_axis) == 0: return 0, 0, w, h h_regions = split_regions(h_axis) w_regions = split_regions(w_axis) for i in range(max_tries): if len(w_regions) > 1: xmin, xmax = region_wise_random_select(w_regions, w) else: xmin, xmax = random_select(w_axis, w) if len(h_regions) > 1: ymin, ymax = region_wise_random_select(h_regions, h) else: ymin, ymax = random_select(h_axis, h) if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h: # area too small continue num_poly_in_rect = 0 for poly in text_polys: if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin, ymax - ymin): num_poly_in_rect += 1 break if num_poly_in_rect > 0: return xmin, ymin, xmax - xmin, ymax - ymin return 0, 0, w, h class EastRandomCropData(object): def __init__(self, size=(640, 640), max_tries=10, min_crop_side_ratio=0.1, keep_ratio=True, **kwargs): self.size = size self.max_tries = max_tries self.min_crop_side_ratio = min_crop_side_ratio self.keep_ratio = keep_ratio def __call__(self, data): img = data['image'] text_polys = data['polys'] ignore_tags = data['ignore_tags'] texts = data['texts'] all_care_polys = [ text_polys[i] for i, tag in enumerate(ignore_tags) if not tag ] # 计算crop区域 crop_x, crop_y, crop_w, crop_h = crop_area( img, all_care_polys, self.min_crop_side_ratio, self.max_tries) # crop 图片 保持比例填充 scale_w = self.size[0] / crop_w scale_h = self.size[1] / crop_h scale = min(scale_w, scale_h) h = int(crop_h * scale) w = int(crop_w * scale) if self.keep_ratio: padimg = np.zeros((self.size[1], self.size[0], img.shape[2]), img.dtype) padimg[:h, :w] = cv2.resize( img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h)) img = padimg else: img = cv2.resize( img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], tuple(self.size)) # crop 文本框 text_polys_crop = [] ignore_tags_crop = [] texts_crop = [] for poly, text, tag in zip(text_polys, texts, ignore_tags): poly = ((poly - (crop_x, crop_y)) * scale).tolist() if not is_poly_outside_rect(poly, 0, 0, w, h): text_polys_crop.append(poly) ignore_tags_crop.append(tag) texts_crop.append(text) data['image'] = img data['polys'] = np.array(text_polys_crop) data['ignore_tags'] = ignore_tags_crop data['texts'] = texts_crop return data class PSERandomCrop(object): def __init__(self, size, **kwargs): self.size = size def __call__(self, data): imgs = data['imgs'] h, w = imgs[0].shape[0:2] th, tw = self.size if w == tw and h == th: return imgs # label中存在文本实例,并且按照概率进行裁剪,使用threshold_label_map控制 if np.max(imgs[2]) > 0 and random.random() > 3 / 8: # 文本实例的左上角点 tl = np.min(np.where(imgs[2] > 0), axis=1) - self.size tl[tl < 0] = 0 # 文本实例的右下角点 br = np.max(np.where(imgs[2] > 0), axis=1) - self.size br[br < 0] = 0 # 保证选到右下角点时,有足够的距离进行crop br[0] = min(br[0], h - th) br[1] = min(br[1], w - tw) for _ in range(50000): i = random.randint(tl[0], br[0]) j = random.randint(tl[1], br[1]) # 保证shrink_label_map有文本 if imgs[1][i:i + th, j:j + tw].sum() <= 0: continue else: break else: i = random.randint(0, h - th) j = random.randint(0, w - tw) # return i, j, th, tw for idx in range(len(imgs)): if len(imgs[idx].shape) == 3: imgs[idx] = imgs[idx][i:i + th, j:j + tw, :] else: imgs[idx] = imgs[idx][i:i + th, j:j + tw] data['imgs'] = imgs return data