infer_ser_e2e.py 5.0 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image

import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
文幕地方's avatar
文幕地方 已提交
25
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27

# relative reference
Z
zhoujun 已提交
28
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
littletomatodonkey's avatar
littletomatodonkey 已提交
29

Z
zhoujun 已提交
30
from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
littletomatodonkey's avatar
littletomatodonkey 已提交
31

文幕地方's avatar
文幕地方 已提交
32 33 34 35 36 37 38
MODELS = {
    'LayoutXLM':
    (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
    'LayoutLM':
    (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}

littletomatodonkey's avatar
littletomatodonkey 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

def trans_poly_to_bbox(poly):
    x1 = np.min([p[0] for p in poly])
    x2 = np.max([p[0] for p in poly])
    y1 = np.min([p[1] for p in poly])
    y2 = np.max([p[1] for p in poly])
    return [x1, y1, x2, y2]


def parse_ocr_info_for_ser(ocr_result):
    ocr_info = []
    for res in ocr_result:
        ocr_info.append({
            "text": res[1][0],
            "bbox": trans_poly_to_bbox(res[0]),
            "poly": res[0],
        })
    return ocr_info


文幕地方's avatar
add re  
文幕地方 已提交
59 60
class SerPredictor(object):
    def __init__(self, args):
文幕地方's avatar
文幕地方 已提交
61
        self.args = args
文幕地方's avatar
add re  
文幕地方 已提交
62 63 64
        self.max_seq_length = args.max_seq_length

        # init ser token and model
文幕地方's avatar
文幕地方 已提交
65 66 67
        tokenizer_class, base_model_class, model_class = MODELS[
            args.ser_model_type]
        self.tokenizer = tokenizer_class.from_pretrained(
文幕地方's avatar
add re  
文幕地方 已提交
68
            args.model_name_or_path)
文幕地方's avatar
文幕地方 已提交
69
        self.model = model_class.from_pretrained(args.model_name_or_path)
文幕地方's avatar
add re  
文幕地方 已提交
70 71 72
        self.model.eval()

        # init ocr_engine
73 74
        from paddleocr import PaddleOCR

文幕地方's avatar
add re  
文幕地方 已提交
75
        self.ocr_engine = PaddleOCR(
76 77
            rec_model_dir=args.rec_model_dir,
            det_model_dir=args.det_model_dir,
文幕地方's avatar
add re  
文幕地方 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
            use_angle_cls=False,
            show_log=False)
        # init dict
        label2id_map, self.id2label_map = get_bio_label_maps(
            args.label_map_path)
        self.label2id_map_for_draw = dict()
        for key in label2id_map:
            if key.startswith("I-"):
                self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
            else:
                self.label2id_map_for_draw[key] = label2id_map[key]

    def __call__(self, img):
        ocr_result = self.ocr_engine.ocr(img, cls=False)

        ocr_info = parse_ocr_info_for_ser(ocr_result)

        inputs = preprocess(
            tokenizer=self.tokenizer,
            ori_img=img,
            ocr_info=ocr_info,
            max_seq_len=self.max_seq_length)

文幕地方's avatar
文幕地方 已提交
101
        if self.args.ser_model_type == 'LayoutLM':
文幕地方's avatar
文幕地方 已提交
102 103 104 105 106
            preds = self.model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])
文幕地方's avatar
文幕地方 已提交
107
        elif self.args.ser_model_type == 'LayoutXLM':
文幕地方's avatar
文幕地方 已提交
108 109 110 111 112 113 114
            preds = self.model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                image=inputs["image"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])
            preds = preds[0]
文幕地方's avatar
add re  
文幕地方 已提交
115 116 117 118 119 120

        preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
        ocr_info = merge_preds_list_with_ocr_info(
            ocr_info, inputs["segment_offset_id"], preds,
            self.label2id_map_for_draw)
        return ocr_info, inputs
littletomatodonkey's avatar
littletomatodonkey 已提交
121 122


文幕地方's avatar
add re  
文幕地方 已提交
123 124 125
if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
littletomatodonkey's avatar
littletomatodonkey 已提交
126 127 128 129 130

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
文幕地方's avatar
add re  
文幕地方 已提交
131
    ser_engine = SerPredictor(args)
文幕地方's avatar
文幕地方 已提交
132 133 134 135
    with open(
            os.path.join(args.output_dir, "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey 已提交
136
        for idx, img_path in enumerate(infer_imgs):
文幕地方's avatar
文幕地方 已提交
137 138 139
            save_img_path = os.path.join(
                args.output_dir,
                os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")
文幕地方's avatar
rm _  
文幕地方 已提交
140
            print("process: [{}/{}], save result to {}".format(
文幕地方's avatar
文幕地方 已提交
141
                idx, len(infer_imgs), save_img_path))
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143 144

            img = cv2.imread(img_path)

文幕地方's avatar
add re  
文幕地方 已提交
145
            result, _ = ser_engine(img)
littletomatodonkey's avatar
littletomatodonkey 已提交
146 147
            fout.write(img_path + "\t" + json.dumps(
                {
文幕地方's avatar
add re  
文幕地方 已提交
148
                    "ser_resule": result,
littletomatodonkey's avatar
littletomatodonkey 已提交
149 150
                }, ensure_ascii=False) + "\n")

文幕地方's avatar
add re  
文幕地方 已提交
151
            img_res = draw_ser_results(img, result)
文幕地方's avatar
文幕地方 已提交
152
            cv2.imwrite(save_img_path, img_res)