infer_ser_e2e.py 4.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image

import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification

文幕地方's avatar
add re  
文幕地方 已提交
26 27
from paddleocr import PaddleOCR

littletomatodonkey's avatar
littletomatodonkey 已提交
28
# relative reference
文幕地方's avatar
add re  
文幕地方 已提交
29
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
littletomatodonkey's avatar
littletomatodonkey 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info


def trans_poly_to_bbox(poly):
    x1 = np.min([p[0] for p in poly])
    x2 = np.max([p[0] for p in poly])
    y1 = np.min([p[1] for p in poly])
    y2 = np.max([p[1] for p in poly])
    return [x1, y1, x2, y2]


def parse_ocr_info_for_ser(ocr_result):
    ocr_info = []
    for res in ocr_result:
        ocr_info.append({
            "text": res[1][0],
            "bbox": trans_poly_to_bbox(res[0]),
            "poly": res[0],
        })
    return ocr_info


文幕地方's avatar
add re  
文幕地方 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class SerPredictor(object):
    def __init__(self, args):
        self.max_seq_length = args.max_seq_length

        # init ser token and model
        self.tokenizer = LayoutXLMTokenizer.from_pretrained(
            args.model_name_or_path)
        self.model = LayoutXLMForTokenClassification.from_pretrained(
            args.model_name_or_path)
        self.model.eval()

        # init ocr_engine
        self.ocr_engine = PaddleOCR(
            rec_model_dir=args.ocr_rec_model_dir,
            det_model_dir=args.ocr_det_model_dir,
            use_angle_cls=False,
            show_log=False)
        # init dict
        label2id_map, self.id2label_map = get_bio_label_maps(
            args.label_map_path)
        self.label2id_map_for_draw = dict()
        for key in label2id_map:
            if key.startswith("I-"):
                self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
            else:
                self.label2id_map_for_draw[key] = label2id_map[key]

    def __call__(self, img):
        ocr_result = self.ocr_engine.ocr(img, cls=False)

        ocr_info = parse_ocr_info_for_ser(ocr_result)

        inputs = preprocess(
            tokenizer=self.tokenizer,
            ori_img=img,
            ocr_info=ocr_info,
            max_seq_len=self.max_seq_length)

        outputs = self.model(
            input_ids=inputs["input_ids"],
            bbox=inputs["bbox"],
            image=inputs["image"],
            token_type_ids=inputs["token_type_ids"],
            attention_mask=inputs["attention_mask"])

        preds = outputs[0]
        preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
        ocr_info = merge_preds_list_with_ocr_info(
            ocr_info, inputs["segment_offset_id"], preds,
            self.label2id_map_for_draw)
        return ocr_info, inputs
littletomatodonkey's avatar
littletomatodonkey 已提交
104 105


文幕地方's avatar
add re  
文幕地方 已提交
106 107 108
if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
littletomatodonkey's avatar
littletomatodonkey 已提交
109 110 111 112 113

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
文幕地方's avatar
add re  
文幕地方 已提交
114
    ser_engine = SerPredictor(args)
littletomatodonkey's avatar
littletomatodonkey 已提交
115 116
    with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout:
        for idx, img_path in enumerate(infer_imgs):
文幕地方's avatar
add re  
文幕地方 已提交
117
            print("process: [{}/{}], {}".format(idx, len(infer_imgs), img_path))
littletomatodonkey's avatar
littletomatodonkey 已提交
118 119 120

            img = cv2.imread(img_path)

文幕地方's avatar
add re  
文幕地方 已提交
121
            result, _ = ser_engine(img)
littletomatodonkey's avatar
littletomatodonkey 已提交
122 123
            fout.write(img_path + "\t" + json.dumps(
                {
文幕地方's avatar
add re  
文幕地方 已提交
124
                    "ser_resule": result,
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126
                }, ensure_ascii=False) + "\n")

文幕地方's avatar
add re  
文幕地方 已提交
127
            img_res = draw_ser_results(img, result)
littletomatodonkey's avatar
littletomatodonkey 已提交
128 129 130 131
            cv2.imwrite(
                os.path.join(args.output_dir,
                             os.path.splitext(os.path.basename(img_path))[0] +
                             "_ser.jpg"), img_res)