predict_rec.py 11.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
41
        self.character_type = args.rec_char_type
42
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
43
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
44 45
        postprocess_params = {
            'name': 'CTCLabelDecode',
T
tink2123 已提交
46
            "character_type": args.rec_char_type,
47
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
48
            "use_space_char": args.use_space_char
T
tink2123 已提交
49
        }
T
tink2123 已提交
50 51 52
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
53 54 55 56 57 58 59
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
60 61 62 63
                "character_type": args.rec_char_type,
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
64 65 66
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = \
            utility.create_predictor(args, 'rec', logger)
L
LDOUBLEV 已提交
67

68
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
69
        imgC, imgH, imgW = self.rec_image_shape
70
        assert imgC == img.shape[2]
71
        if self.character_type == "ch":
T
tink2123 已提交
72
            imgW = int((32 * max_wh_ratio))
73
        h, w = img.shape[:2]
74 75 76 77 78
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
79
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
80 81 82 83 84 85 86 87
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
160 161
    def __call__(self, img_list):
        img_num = len(img_list)
162
        # Calculate the aspect ratio of all text bars
163 164 165
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
166
        # Sorting can speed up the recognition process
167 168 169 170
        indices = np.argsort(np.array(width_list))

        # rec_res = []
        rec_res = [['', 0.0]] * img_num
171
        batch_num = self.rec_batch_num
W
WenmuZhou 已提交
172
        elapse = 0
L
LDOUBLEV 已提交
173 174 175
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
176
            max_wh_ratio = 0
L
LDOUBLEV 已提交
177
            for ino in range(beg_img_no, end_img_no):
178 179
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
180 181 182
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                if self.rec_algorithm != "SRN":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
L
LDOUBLEV 已提交
200 201
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

            if self.rec_algorithm == "SRN":
                starttime = time.time()
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                input_names = self.predictor.get_input_names()
                for i in range(len(input_names)):
                    input_tensor = self.predictor.get_input_handle(input_names[
                        i])
                    input_tensor.copy_from_cpu(inputs[i])
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = {"predict": outputs[2]}
            else:
                starttime = time.time()
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()

                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                preds = outputs[0]

W
WenmuZhou 已提交
241 242 243
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
244
            elapse += time.time() - starttime
W
WenmuZhou 已提交
245
        return rec_res, elapse
L
LDOUBLEV 已提交
246 247


248
def main(args):
D
dyning 已提交
249
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
250
    text_recognizer = TextRecognizer(args)
L
littletomatodonkey 已提交
251 252
    total_run_time = 0.0
    total_images_num = 0
L
LDOUBLEV 已提交
253 254
    valid_image_file_list = []
    img_list = []
L
littletomatodonkey 已提交
255
    for idx, image_file in enumerate(image_file_list):
L
LDOUBLEV 已提交
256 257 258
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
259 260 261 262 263
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
littletomatodonkey 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        if len(img_list) >= args.rec_batch_num or idx == len(
                image_file_list) - 1:
            try:
                rec_res, predict_time = text_recognizer(img_list)
                total_run_time += predict_time
            except:
                logger.info(traceback.format_exc())
                logger.info(
                    "ERROR!!!! \n"
                    "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
                    "If your model has tps module:  "
                    "TPS does not support variable shape.\n"
                    "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' "
                )
                exit()
            for ino in range(len(img_list)):
                logger.info("Predicts of {}:{}".format(valid_image_file_list[
                    ino], rec_res[ino]))
            total_images_num += len(valid_image_file_list)
            valid_image_file_list = []
            img_list = []
W
WenmuZhou 已提交
285
    logger.info("Total predict time for {} images, cost: {:.3f}".format(
L
littletomatodonkey 已提交
286
        total_images_num, total_run_time))
287 288 289 290


if __name__ == "__main__":
    main(utility.parse_args())