未验证 提交 f67c9b2e 编写于 作者: Y YixinKristy 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

...@@ -47,12 +47,11 @@ PP-Tracking 提供了简洁的GUI可视化界面,教程请参考[PP-Tracking ...@@ -47,12 +47,11 @@ PP-Tracking 提供了简洁的GUI可视化界面,教程请参考[PP-Tracking
## 安装依赖 ## 安装依赖
一键安装MOT相关的依赖: 一键安装MOT相关的依赖:
``` ```
pip install lap sklearn motmetrics openpyxl cython_bbox pip install lap sklearn motmetrics openpyxl
或者 或者
pip install -r requirements.txt pip install -r requirements.txt
``` ```
**注意:** **注意:**
- `cython_bbox`在windows上安装:`pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox`。可参考这个[教程](https://stackoverflow.com/questions/60349980/is-there-a-way-to-install-cython-bbox-for-windows)
- 预测需确保已安装[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg` - 预测需确保已安装[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
......
...@@ -49,12 +49,11 @@ PP-Tracking supports GUI predict and deployment. Please refer to this [doc](http ...@@ -49,12 +49,11 @@ PP-Tracking supports GUI predict and deployment. Please refer to this [doc](http
## Installation ## Installation
Install all the related dependencies for MOT: Install all the related dependencies for MOT:
``` ```
pip install lap sklearn motmetrics openpyxl cython_bbox pip install lap sklearn motmetrics openpyxl
or or
pip install -r requirements.txt pip install -r requirements.txt
``` ```
**Notes:** **Notes:**
- Install `cython_bbox` for Windows: `pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox`. You can refer to this [tutorial](https://stackoverflow.com/questions/60349980/is-there-a-way-to-install-cython-bbox-for-windows).
- Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. - Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
......
...@@ -86,7 +86,7 @@ PP-tracking provides an AI studio public project tutorial. Please refer to this ...@@ -86,7 +86,7 @@ PP-tracking provides an AI studio public project tutorial. Please refer to this
### Results on MOT-17 Half Set ### Results on MOT-17 Half Set
| backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config | | backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: | | :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34 | 1088x608 | 69.1 | 72.8 | 299 | 1957 | 14412 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bytetracker.pdparams) | [config](./fairmot_dla34_30e_1088x608.yml) | | DLA-34 | 1088x608 | 69.1 | 72.8 | 299 | 1957 | 14412 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | [config](./fairmot_dla34_30e_1088x608.yml) |
| DLA-34 + BYTETracker| 1088x608 | 70.3 | 73.2 | 234 | 2176 | 13598 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bytetracker.pdparams) | [config](./fairmot_dla34_30e_1088x608_bytetracker.yml) | | DLA-34 + BYTETracker| 1088x608 | 70.3 | 73.2 | 234 | 2176 | 13598 | - |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bytetracker.pdparams) | [config](./fairmot_dla34_30e_1088x608_bytetracker.yml) |
**Notes:** **Notes:**
......
...@@ -82,7 +82,7 @@ PP-Tracking 提供了AI Studio公开项目案例,教程请参考[PP-Tracking ...@@ -82,7 +82,7 @@ PP-Tracking 提供了AI Studio公开项目案例,教程请参考[PP-Tracking
### 在MOT-17 Half上结果 ### 在MOT-17 Half上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 | | 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: | | :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34 | 1088x608 | 69.1 | 72.8 | 299 | 1957 | 14412 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bytetracker.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608.yml) | | DLA-34 | 1088x608 | 69.1 | 72.8 | 299 | 1957 | 14412 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608.yml) |
| DLA-34 + BYTETracker| 1088x608 | 70.3 | 73.2 | 234 | 2176 | 13598 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bytetracker.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_bytetracker.yml) | | DLA-34 + BYTETracker| 1088x608 | 70.3 | 73.2 | 234 | 2176 | 13598 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_bytetracker.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_bytetracker.yml) |
......
...@@ -14,8 +14,18 @@ TrainDataset: ...@@ -14,8 +14,18 @@ TrainDataset:
image_lists: ['mot17.half', 'caltech.all', 'cuhksysu.train', 'prw.train', 'citypersons.train', 'eth.train'] image_lists: ['mot17.half', 'caltech.all', 'cuhksysu.train', 'prw.train', 'citypersons.train', 'eth.train']
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide'] data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: MOT17/images/half
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
JDETracker: JDETracker:
use_byte: True use_byte: True
match_thres: 0.8 match_thres: 0.8
conf_thres: 0.4 conf_thres: 0.4
low_conf_thres: 0.2 low_conf_thres: 0.2
min_box_area: 200
vertical_ratio: 1.6 # for pedestrian
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
| :-------------| :-------- | :------- | :----: | :----: | :----: | :-----: |:------: | | :-------------| :-------- | :------- | :----: | :----: | :----: | :-----: |:------: |
| PathTrack | DLA-34 | 1088x608 | 44.9 | 59.3 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_pathtrack.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_pathtrack.yml) | | PathTrack | DLA-34 | 1088x608 | 44.9 | 59.3 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_pathtrack.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_pathtrack.yml) |
| VisDrone | DLA-34 | 1088x608 | 49.2 | 63.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml) | | VisDrone | DLA-34 | 1088x608 | 49.2 | 63.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_dla34_30e_1088x608_visdrone_pedestrian.yml) |
| VisDrone | HRNetv2-W18| 1088x608 | 40.5 | 54.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.yml) | | VisDrone | HRNetv2-W18| 1088x608 | 40.5 | 54.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.yml) |
| VisDrone | HRNetv2-W18| 864x480 | 38.6 | 50.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.yml) | | VisDrone | HRNetv2-W18| 864x480 | 38.6 | 50.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_864x480_visdrone_pedestrian.yml) |
| VisDrone | HRNetv2-W18| 576x320 | 30.6 | 47.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.yml) | | VisDrone | HRNetv2-W18| 576x320 | 30.6 | 47.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.pdparams) | [配置文件](./fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_pedestrian.yml) |
...@@ -124,8 +124,8 @@ month={Oct},} ...@@ -124,8 +124,8 @@ month={Oct},}
@ARTICLE{9573394, @ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin}, author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detection and Tracking Meet Drones Challenge}, title={Detection and Tracking Meet Drones Challenge},
year={2021}, year={2021},
volume={}, volume={},
number={}, number={},
......
此差异已折叠。
...@@ -15,16 +15,15 @@ ...@@ -15,16 +15,15 @@
// for setprecision // for setprecision
#include <chrono> #include <chrono>
#include <iomanip> #include <iomanip>
#include "include/object_detector.h"
using namespace paddle_infer; #include "include/object_detector.h"
namespace PaddleDetection { namespace PaddleDetection {
// Load Model and create model predictor // Load Model and create model predictor
void ObjectDetector::LoadModel(const std::string& model_dir, void ObjectDetector::LoadModel(const std::string &model_dir,
const int batch_size, const int batch_size,
const std::string& run_mode) { const std::string &run_mode) {
paddle_infer::Config config; paddle_infer::Config config;
std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel"; std::string prog_file = model_dir + OS_PATH_SEP + "model.pdmodel";
std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams"; std::string params_file = model_dir + OS_PATH_SEP + "model.pdiparams";
...@@ -42,27 +41,22 @@ void ObjectDetector::LoadModel(const std::string& model_dir, ...@@ -42,27 +41,22 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
} else if (run_mode == "trt_int8") { } else if (run_mode == "trt_int8") {
precision = paddle_infer::Config::Precision::kInt8; precision = paddle_infer::Config::Precision::kInt8;
} else { } else {
printf( printf("run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or "
"run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or " "'trt_int8'");
"'trt_int8'");
} }
// set tensorrt // set tensorrt
config.EnableTensorRtEngine(1 << 30, config.EnableTensorRtEngine(1 << 30, batch_size, this->min_subgraph_size_,
batch_size, precision, false, this->trt_calib_mode_);
this->min_subgraph_size_,
precision,
false,
this->trt_calib_mode_);
// set use dynamic shape // set use dynamic shape
if (this->use_dynamic_shape_) { if (this->use_dynamic_shape_) {
// set DynamicShsape for image tensor // set DynamicShape for image tensor
const std::vector<int> min_input_shape = { const std::vector<int> min_input_shape = {
1, 3, this->trt_min_shape_, this->trt_min_shape_}; batch_size, 3, this->trt_min_shape_, this->trt_min_shape_};
const std::vector<int> max_input_shape = { const std::vector<int> max_input_shape = {
1, 3, this->trt_max_shape_, this->trt_max_shape_}; batch_size, 3, this->trt_max_shape_, this->trt_max_shape_};
const std::vector<int> opt_input_shape = { const std::vector<int> opt_input_shape = {
1, 3, this->trt_opt_shape_, this->trt_opt_shape_}; batch_size, 3, this->trt_opt_shape_, this->trt_opt_shape_};
const std::map<std::string, std::vector<int>> map_min_input_shape = { const std::map<std::string, std::vector<int>> map_min_input_shape = {
{"image", min_input_shape}}; {"image", min_input_shape}};
const std::map<std::string, std::vector<int>> map_max_input_shape = { const std::map<std::string, std::vector<int>> map_max_input_shape = {
...@@ -70,8 +64,8 @@ void ObjectDetector::LoadModel(const std::string& model_dir, ...@@ -70,8 +64,8 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
const std::map<std::string, std::vector<int>> map_opt_input_shape = { const std::map<std::string, std::vector<int>> map_opt_input_shape = {
{"image", opt_input_shape}}; {"image", opt_input_shape}};
config.SetTRTDynamicShapeInfo( config.SetTRTDynamicShapeInfo(map_min_input_shape, map_max_input_shape,
map_min_input_shape, map_max_input_shape, map_opt_input_shape); map_opt_input_shape);
std::cout << "TensorRT dynamic shape enabled" << std::endl; std::cout << "TensorRT dynamic shape enabled" << std::endl;
} }
} }
...@@ -96,12 +90,11 @@ void ObjectDetector::LoadModel(const std::string& model_dir, ...@@ -96,12 +90,11 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
} }
// Visualiztion MaskDetector results // Visualiztion MaskDetector results
cv::Mat VisualizeResult( cv::Mat
const cv::Mat& img, VisualizeResult(const cv::Mat &img,
const std::vector<PaddleDetection::ObjectResult>& results, const std::vector<PaddleDetection::ObjectResult> &results,
const std::vector<std::string>& lables, const std::vector<std::string> &lables,
const std::vector<int>& colormap, const std::vector<int> &colormap, const bool is_rbox = false) {
const bool is_rbox = false) {
cv::Mat vis_img = img.clone(); cv::Mat vis_img = img.clone();
for (int i = 0; i < results.size(); ++i) { for (int i = 0; i < results.size(); ++i) {
// Configure color and text size // Configure color and text size
...@@ -142,24 +135,18 @@ cv::Mat VisualizeResult( ...@@ -142,24 +135,18 @@ cv::Mat VisualizeResult(
origin.y = results[i].rect[1]; origin.y = results[i].rect[1];
// Configure text background // Configure text background
cv::Rect text_back = cv::Rect(results[i].rect[0], cv::Rect text_back =
results[i].rect[1] - text_size.height, cv::Rect(results[i].rect[0], results[i].rect[1] - text_size.height,
text_size.width, text_size.width, text_size.height);
text_size.height);
// Draw text, and background // Draw text, and background
cv::rectangle(vis_img, text_back, roi_color, -1); cv::rectangle(vis_img, text_back, roi_color, -1);
cv::putText(vis_img, cv::putText(vis_img, text, origin, font_face, font_scale,
text, cv::Scalar(255, 255, 255), thickness);
origin,
font_face,
font_scale,
cv::Scalar(255, 255, 255),
thickness);
} }
return vis_img; return vis_img;
} }
void ObjectDetector::Preprocess(const cv::Mat& ori_im) { void ObjectDetector::Preprocess(const cv::Mat &ori_im) {
// Clone the image : keep the original mat for postprocess // Clone the image : keep the original mat for postprocess
cv::Mat im = ori_im.clone(); cv::Mat im = ori_im.clone();
cv::cvtColor(im, im, cv::COLOR_BGR2RGB); cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
...@@ -168,9 +155,8 @@ void ObjectDetector::Preprocess(const cv::Mat& ori_im) { ...@@ -168,9 +155,8 @@ void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
void ObjectDetector::Postprocess( void ObjectDetector::Postprocess(
const std::vector<cv::Mat> mats, const std::vector<cv::Mat> mats,
std::vector<PaddleDetection::ObjectResult>* result, std::vector<PaddleDetection::ObjectResult> *result,
std::vector<int> bbox_num, std::vector<int> bbox_num, std::vector<float> output_data_,
std::vector<float> output_data_,
bool is_rbox = false) { bool is_rbox = false) {
result->clear(); result->clear();
int start_idx = 0; int start_idx = 0;
...@@ -226,12 +212,11 @@ void ObjectDetector::Postprocess( ...@@ -226,12 +212,11 @@ void ObjectDetector::Postprocess(
} }
void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
const double threshold, const double threshold, const int warmup,
const int warmup,
const int repeats, const int repeats,
std::vector<PaddleDetection::ObjectResult>* result, std::vector<PaddleDetection::ObjectResult> *result,
std::vector<int>* bbox_num, std::vector<int> *bbox_num,
std::vector<double>* times) { std::vector<double> *times) {
auto preprocess_start = std::chrono::steady_clock::now(); auto preprocess_start = std::chrono::steady_clock::now();
int batch_size = imgs.size(); int batch_size = imgs.size();
...@@ -239,7 +224,7 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -239,7 +224,7 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
std::vector<float> in_data_all; std::vector<float> in_data_all;
std::vector<float> im_shape_all(batch_size * 2); std::vector<float> im_shape_all(batch_size * 2);
std::vector<float> scale_factor_all(batch_size * 2); std::vector<float> scale_factor_all(batch_size * 2);
std::vector<const float*> output_data_list_; std::vector<const float *> output_data_list_;
std::vector<int> out_bbox_num_data_; std::vector<int> out_bbox_num_data_;
// in_net img for each batch // in_net img for each batch
...@@ -255,9 +240,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -255,9 +240,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0]; scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1]; scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];
// TODO: reduce cost time in_data_all.insert(in_data_all.end(), inputs_.im_data_.begin(),
in_data_all.insert( inputs_.im_data_.end());
in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
// collect in_net img // collect in_net img
in_net_img_all[bs_idx] = inputs_.in_net_im_; in_net_img_all[bs_idx] = inputs_.in_net_im_;
...@@ -276,10 +260,10 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -276,10 +260,10 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
pad_img.convertTo(pad_img, CV_32FC3); pad_img.convertTo(pad_img, CV_32FC3);
std::vector<float> pad_data; std::vector<float> pad_data;
pad_data.resize(rc * rh * rw); pad_data.resize(rc * rh * rw);
float* base = pad_data.data(); float *base = pad_data.data();
for (int i = 0; i < rc; ++i) { for (int i = 0; i < rc; ++i) {
cv::extractChannel( cv::extractChannel(pad_img,
pad_img, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i); cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
} }
in_data_all.insert(in_data_all.end(), pad_data.begin(), pad_data.end()); in_data_all.insert(in_data_all.end(), pad_data.begin(), pad_data.end());
} }
...@@ -290,7 +274,7 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -290,7 +274,7 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
auto preprocess_end = std::chrono::steady_clock::now(); auto preprocess_end = std::chrono::steady_clock::now();
// Prepare input tensor // Prepare input tensor
auto input_names = predictor_->GetInputNames(); auto input_names = predictor_->GetInputNames();
for (const auto& tensor_name : input_names) { for (const auto &tensor_name : input_names) {
auto in_tensor = predictor_->GetInputHandle(tensor_name); auto in_tensor = predictor_->GetInputHandle(tensor_name);
if (tensor_name == "image") { if (tensor_name == "image") {
int rh = inputs_.in_net_shape_[0]; int rh = inputs_.in_net_shape_[0];
...@@ -320,8 +304,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -320,8 +304,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
for (int j = 0; j < output_names.size(); j++) { for (int j = 0; j < output_names.size(); j++) {
auto output_tensor = predictor_->GetOutputHandle(output_names[j]); auto output_tensor = predictor_->GetOutputHandle(output_names[j]);
std::vector<int> output_shape = output_tensor->shape(); std::vector<int> output_shape = output_tensor->shape();
int out_num = std::accumulate( int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
output_shape.begin(), output_shape.end(), 1, std::multiplies<int>()); std::multiplies<int>());
if (output_tensor->type() == paddle_infer::DataType::INT32) { if (output_tensor->type() == paddle_infer::DataType::INT32) {
out_bbox_num_data_.resize(out_num); out_bbox_num_data_.resize(out_num);
output_tensor->CopyToCpu(out_bbox_num_data_.data()); output_tensor->CopyToCpu(out_bbox_num_data_.data());
...@@ -344,8 +328,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -344,8 +328,8 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
for (int j = 0; j < output_names.size(); j++) { for (int j = 0; j < output_names.size(); j++) {
auto output_tensor = predictor_->GetOutputHandle(output_names[j]); auto output_tensor = predictor_->GetOutputHandle(output_names[j]);
std::vector<int> output_shape = output_tensor->shape(); std::vector<int> output_shape = output_tensor->shape();
int out_num = std::accumulate( int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
output_shape.begin(), output_shape.end(), 1, std::multiplies<int>()); std::multiplies<int>());
output_shape_list.push_back(output_shape); output_shape_list.push_back(output_shape);
if (output_tensor->type() == paddle_infer::DataType::INT32) { if (output_tensor->type() == paddle_infer::DataType::INT32) {
out_bbox_num_data_.resize(out_num); out_bbox_num_data_.resize(out_num);
...@@ -371,22 +355,15 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs, ...@@ -371,22 +355,15 @@ void ObjectDetector::Predict(const std::vector<cv::Mat> imgs,
if (i == config_.fpn_stride_.size()) { if (i == config_.fpn_stride_.size()) {
reg_max = output_shape_list[i][2] / 4 - 1; reg_max = output_shape_list[i][2] / 4 - 1;
} }
float* buffer = new float[out_tensor_list[i].size()]; float *buffer = new float[out_tensor_list[i].size()];
memcpy(buffer, memcpy(buffer, &out_tensor_list[i][0],
&out_tensor_list[i][0],
out_tensor_list[i].size() * sizeof(float)); out_tensor_list[i].size() * sizeof(float));
output_data_list_.push_back(buffer); output_data_list_.push_back(buffer);
} }
PaddleDetection::PicoDetPostProcess( PaddleDetection::PicoDetPostProcess(
result, result, output_data_list_, config_.fpn_stride_, inputs_.im_shape_,
output_data_list_, inputs_.scale_factor_, config_.nms_info_["score_threshold"].as<float>(),
config_.fpn_stride_, config_.nms_info_["nms_threshold"].as<float>(), num_class, reg_max);
inputs_.im_shape_,
inputs_.scale_factor_,
config_.nms_info_["score_threshold"].as<float>(),
config_.nms_info_["nms_threshold"].as<float>(),
num_class,
reg_max);
bbox_num->push_back(result->size()); bbox_num->push_back(result->size());
} else { } else {
is_rbox = output_shape_list[0][output_shape_list[0].size() - 1] % 10 == 0; is_rbox = output_shape_list[0][output_shape_list[0].size() - 1] % 10 == 0;
......
...@@ -35,6 +35,9 @@ class Result(object): ...@@ -35,6 +35,9 @@ class Result(object):
return self.res_dict[name] return self.res_dict[name]
return None return None
def clear(self, name):
self.res_dict[name].clear()
class DataCollector(object): class DataCollector(object):
""" """
...@@ -80,7 +83,6 @@ class DataCollector(object): ...@@ -80,7 +83,6 @@ class DataCollector(object):
ids = int(mot_item[0]) ids = int(mot_item[0])
if ids not in self.collector: if ids not in self.collector:
self.collector[ids] = copy.deepcopy(self.mots) self.collector[ids] = copy.deepcopy(self.mots)
self.collector[ids]["frames"].append(frameid) self.collector[ids]["frames"].append(frameid)
self.collector[ids]["rects"].append([mot_item[2:]]) self.collector[ids]["rects"].append([mot_item[2:]])
if attr_res: if attr_res:
......
...@@ -297,10 +297,9 @@ def distill_idfeat(mot_res): ...@@ -297,10 +297,9 @@ def distill_idfeat(mot_res):
feature_new = feature_list feature_new = feature_list
#if available frames number is more than 200, take one frame data per 20 frames #if available frames number is more than 200, take one frame data per 20 frames
if len(qualities_new) > 200: skipf = 1
skipf = 20 if len(qualities_new) > 20:
else: skipf = 2
skipf = max(10, len(qualities_new) // 10)
quality_skip = np.array(qualities_new[::skipf]) quality_skip = np.array(qualities_new[::skipf])
feature_skip = np.array(feature_new[::skipf]) feature_skip = np.array(feature_new[::skipf])
......
...@@ -587,7 +587,7 @@ class PipePredictor(object): ...@@ -587,7 +587,7 @@ class PipePredictor(object):
if self.cfg['visual']: if self.cfg['visual']:
self.action_visual_helper.update(action_res) self.action_visual_helper.update(action_res)
if self.with_mtmct: if self.with_mtmct and frame_id % 10 == 0:
crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot( crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
frame, mot_res) frame, mot_res)
if frame_id > self.warmup_frame: if frame_id > self.warmup_frame:
...@@ -603,6 +603,8 @@ class PipePredictor(object): ...@@ -603,6 +603,8 @@ class PipePredictor(object):
"rects": rects "rects": rects
} }
self.pipeline_res.update(reid_res_dict, 'reid') self.pipeline_res.update(reid_res_dict, 'reid')
else:
self.pipeline_res.clear('reid')
self.collector.append(frame_id, self.pipeline_res) self.collector.append(frame_id, self.pipeline_res)
......
...@@ -26,7 +26,7 @@ warnings.filterwarnings("ignore") ...@@ -26,7 +26,7 @@ warnings.filterwarnings("ignore")
__all__ = [ __all__ = [
'merge_matches', 'merge_matches',
'linear_assignment', 'linear_assignment',
'cython_bbox_ious', 'bbox_ious',
'iou_distance', 'iou_distance',
'embedding_distance', 'embedding_distance',
'fuse_motion', 'fuse_motion',
...@@ -68,22 +68,28 @@ def linear_assignment(cost_matrix, thresh): ...@@ -68,22 +68,28 @@ def linear_assignment(cost_matrix, thresh):
return matches, unmatched_a, unmatched_b return matches, unmatched_a, unmatched_b
def cython_bbox_ious(atlbrs, btlbrs): def bbox_ious(atlbrs, btlbrs):
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float) boxes = np.ascontiguousarray(atlbrs, dtype=np.float)
if ious.size == 0: query_boxes = np.ascontiguousarray(btlbrs, dtype=np.float)
N = boxes.shape[0]
K = query_boxes.shape[0]
ious = np.zeros((N, K), dtype=boxes.dtype)
if N * K == 0:
return ious return ious
try:
import cython_bbox for k in range(K):
except Exception as e: box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + 1) *
print('cython_bbox not found, please install cython_bbox.' (query_boxes[k, 3] - query_boxes[k, 1] + 1))
'for example: `pip install cython_bbox`.') for n in range(N):
exit() iw = (min(boxes[n, 2], query_boxes[k, 2]) - max(
boxes[n, 0], query_boxes[k, 0]) + 1)
ious = cython_bbox.bbox_overlaps( if iw > 0:
np.ascontiguousarray( ih = (min(boxes[n, 3], query_boxes[k, 3]) - max(
atlbrs, dtype=np.float), boxes[n, 1], query_boxes[k, 1]) + 1)
np.ascontiguousarray( if ih > 0:
btlbrs, dtype=np.float)) ua = float((boxes[n, 2] - boxes[n, 0] + 1) * (boxes[
n, 3] - boxes[n, 1] + 1) + box_area - iw * ih)
ious[n, k] = iw * ih / ua
return ious return ious
...@@ -98,7 +104,7 @@ def iou_distance(atracks, btracks): ...@@ -98,7 +104,7 @@ def iou_distance(atracks, btracks):
else: else:
atlbrs = [track.tlbr for track in atracks] atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks] btlbrs = [track.tlbr for track in btracks]
_ious = cython_bbox_ious(atlbrs, btlbrs) _ious = bbox_ious(atlbrs, btlbrs)
cost_matrix = 1 - _ious cost_matrix = 1 - _ious
return cost_matrix return cost_matrix
......
...@@ -231,7 +231,7 @@ class Detector(object): ...@@ -231,7 +231,7 @@ class Detector(object):
self.det_times.preprocess_time_s.end() self.det_times.preprocess_time_s.end()
# model prediction # model prediction
result = self.predict(repeats=repeats) # warmup result = self.predict(repeats=50) # warmup
self.det_times.inference_time_s.start() self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats) result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats) self.det_times.inference_time_s.end(repeats=repeats)
...@@ -296,7 +296,7 @@ class Detector(object): ...@@ -296,7 +296,7 @@ class Detector(object):
if not os.path.exists(self.output_dir): if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir) os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name) out_path = os.path.join(self.output_dir, video_out_name)
fourcc = cv2.VideoWriter_fourcc(* 'mp4v') fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 1 index = 1
while (1): while (1):
...@@ -790,7 +790,7 @@ def main(): ...@@ -790,7 +790,7 @@ def main():
if FLAGS.image_dir is None and FLAGS.image_file is not None: if FLAGS.image_dir is None and FLAGS.image_file is not None:
assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None" assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10) detector.predict_image(img_list, FLAGS.run_benchmark, repeats=100)
if not FLAGS.run_benchmark: if not FLAGS.run_benchmark:
detector.det_times.info(average=True) detector.det_times.info(average=True)
else: else:
......
...@@ -306,11 +306,12 @@ class MCMOTEvaluator(object): ...@@ -306,11 +306,12 @@ class MCMOTEvaluator(object):
def load_annotations(self): def load_annotations(self):
assert self.data_type == 'mcmot' assert self.data_type == 'mcmot'
self.gt_filename = os.path.join(self.data_root, '../', self.gt_filename = os.path.join(self.data_root, '../', 'sequences',
'sequences',
'{}.txt'.format(self.seq_name)) '{}.txt'.format(self.seq_name))
if not os.path.exists(self.gt_filename): if not os.path.exists(self.gt_filename):
logger.warning("gt_filename '{}' of MCMOTEvaluator is not exist, so the MOTA will be -inf.") logger.warning(
"gt_filename '{}' of MCMOTEvaluator is not exist, so the MOTA will be -INF."
)
def reset_accumulator(self): def reset_accumulator(self):
import motmetrics as mm import motmetrics as mm
......
...@@ -37,8 +37,11 @@ __all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric', 'KITTIMOTMetric'] ...@@ -37,8 +37,11 @@ __all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric', 'KITTIMOTMetric']
def read_mot_results(filename, is_gt=False, is_ignore=False): def read_mot_results(filename, is_gt=False, is_ignore=False):
valid_label = [1] valid_label = [1]
ignore_labels = [2, 7, 8, 12] # only in motchallenge datasets like 'MOT16' ignore_labels = [2, 7, 8, 12] # only in motchallenge datasets like 'MOT16'
logger.info("In MOT16/17 dataset the valid_label of ground truth is '{}', " if is_gt:
"in other dataset it should be '0' for single classs MOT.".format(valid_label[0])) logger.info(
"In MOT16/17 dataset the valid_label of ground truth is '{}', "
"in other dataset it should be '0' for single classs MOT.".format(
valid_label[0]))
results_dict = dict() results_dict = dict()
if os.path.isfile(filename): if os.path.isfile(filename):
with open(filename, 'r') as f: with open(filename, 'r') as f:
...@@ -118,7 +121,9 @@ class MOTEvaluator(object): ...@@ -118,7 +121,9 @@ class MOTEvaluator(object):
gt_filename = os.path.join(self.data_root, self.seq_name, 'gt', gt_filename = os.path.join(self.data_root, self.seq_name, 'gt',
'gt.txt') 'gt.txt')
if not os.path.exists(gt_filename): if not os.path.exists(gt_filename):
logger.warning("gt_filename '{}' of MOTEvaluator is not exist, so the MOTA will be -inf.") logger.warning(
"gt_filename '{}' of MOTEvaluator is not exist, so the MOTA will be -INF."
)
self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True) self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True)
self.gt_ignore_frame_dict = read_mot_results( self.gt_ignore_frame_dict = read_mot_results(
gt_filename, is_ignore=True) gt_filename, is_ignore=True)
......
...@@ -22,22 +22,23 @@ class BaseArch(nn.Layer): ...@@ -22,22 +22,23 @@ class BaseArch(nn.Layer):
self.fuse_norm = False self.fuse_norm = False
def load_meanstd(self, cfg_transform): def load_meanstd(self, cfg_transform):
self.scale = 1. scale = 1.
self.mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape( mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
(1, 3, 1, 1)) std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
self.std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))
for item in cfg_transform: for item in cfg_transform:
if 'NormalizeImage' in item: if 'NormalizeImage' in item:
self.mean = paddle.to_tensor(item['NormalizeImage'][ mean = np.array(
'mean']).reshape((1, 3, 1, 1)) item['NormalizeImage']['mean'], dtype=np.float32)
self.std = paddle.to_tensor(item['NormalizeImage'][ std = np.array(item['NormalizeImage']['std'], dtype=np.float32)
'std']).reshape((1, 3, 1, 1))
if item['NormalizeImage'].get('is_scale', True): if item['NormalizeImage'].get('is_scale', True):
self.scale = 1. / 255. scale = 1. / 255.
break break
if self.data_format == 'NHWC': if self.data_format == 'NHWC':
self.mean = self.mean.reshape(1, 1, 1, 3) self.scale = paddle.to_tensor(scale / std).reshape((1, 1, 1, 3))
self.std = self.std.reshape(1, 1, 1, 3) self.bias = paddle.to_tensor(-mean / std).reshape((1, 1, 1, 3))
else:
self.scale = paddle.to_tensor(scale / std).reshape((1, 3, 1, 1))
self.bias = paddle.to_tensor(-mean / std).reshape((1, 3, 1, 1))
def forward(self, inputs): def forward(self, inputs):
if self.data_format == 'NHWC': if self.data_format == 'NHWC':
...@@ -46,7 +47,7 @@ class BaseArch(nn.Layer): ...@@ -46,7 +47,7 @@ class BaseArch(nn.Layer):
if self.fuse_norm: if self.fuse_norm:
image = inputs['image'] image = inputs['image']
self.inputs['image'] = (image * self.scale - self.mean) / self.std self.inputs['image'] = image * self.scale + self.bias
self.inputs['im_shape'] = inputs['im_shape'] self.inputs['im_shape'] = inputs['im_shape']
self.inputs['scale_factor'] = inputs['scale_factor'] self.inputs['scale_factor'] = inputs['scale_factor']
else: else:
...@@ -66,8 +67,7 @@ class BaseArch(nn.Layer): ...@@ -66,8 +67,7 @@ class BaseArch(nn.Layer):
outs = [] outs = []
for inp in inputs_list: for inp in inputs_list:
if self.fuse_norm: if self.fuse_norm:
self.inputs['image'] = ( self.inputs['image'] = inp['image'] * self.scale + self.bias
inp['image'] * self.scale - self.mean) / self.std
self.inputs['im_shape'] = inp['im_shape'] self.inputs['im_shape'] = inp['im_shape']
self.inputs['scale_factor'] = inp['scale_factor'] self.inputs['scale_factor'] = inp['scale_factor']
else: else:
...@@ -75,7 +75,7 @@ class BaseArch(nn.Layer): ...@@ -75,7 +75,7 @@ class BaseArch(nn.Layer):
outs.append(self.get_pred()) outs.append(self.get_pred())
# multi-scale test # multi-scale test
if len(outs)>1: if len(outs) > 1:
out = self.merge_multi_scale_predictions(outs) out = self.merge_multi_scale_predictions(outs)
else: else:
out = outs[0] out = outs[0]
...@@ -92,7 +92,9 @@ class BaseArch(nn.Layer): ...@@ -92,7 +92,9 @@ class BaseArch(nn.Layer):
keep_top_k = self.bbox_post_process.nms.keep_top_k keep_top_k = self.bbox_post_process.nms.keep_top_k
nms_threshold = self.bbox_post_process.nms.nms_threshold nms_threshold = self.bbox_post_process.nms.nms_threshold
else: else:
raise Exception("Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now") raise Exception(
"Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now"
)
final_boxes = [] final_boxes = []
all_scale_outs = paddle.concat([o['bbox'] for o in outs]).numpy() all_scale_outs = paddle.concat([o['bbox'] for o in outs]).numpy()
...@@ -101,9 +103,11 @@ class BaseArch(nn.Layer): ...@@ -101,9 +103,11 @@ class BaseArch(nn.Layer):
if np.count_nonzero(idxs) == 0: if np.count_nonzero(idxs) == 0:
continue continue
r = nms(all_scale_outs[idxs, 1:], nms_threshold) r = nms(all_scale_outs[idxs, 1:], nms_threshold)
final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1)) final_boxes.append(
np.concatenate([np.full((r.shape[0], 1), c), r], 1))
out = np.concatenate(final_boxes) out = np.concatenate(final_boxes)
out = np.concatenate(sorted(out, key=lambda e: e[1])[-keep_top_k:]).reshape((-1, 6)) out = np.concatenate(sorted(
out, key=lambda e: e[1])[-keep_top_k:]).reshape((-1, 6))
out = { out = {
'bbox': paddle.to_tensor(out), 'bbox': paddle.to_tensor(out),
'bbox_num': paddle.to_tensor(np.array([out.shape[0], ])) 'bbox_num': paddle.to_tensor(np.array([out.shape[0], ]))
......
...@@ -199,7 +199,11 @@ class ATSSAssigner(nn.Layer): ...@@ -199,7 +199,11 @@ class ATSSAssigner(nn.Layer):
gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0) gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4]) assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])
assigned_scores = F.one_hot(assigned_labels, self.num_classes) assigned_scores = F.one_hot(assigned_labels, self.num_classes + 1)
ind = list(range(self.num_classes + 1))
ind.remove(bg_index)
assigned_scores = paddle.index_select(
assigned_scores, paddle.to_tensor(ind), axis=-1)
if pred_bboxes is not None: if pred_bboxes is not None:
# assigned iou # assigned iou
ious = batch_iou_similarity(gt_bboxes, pred_bboxes) * mask_positive ious = batch_iou_similarity(gt_bboxes, pred_bboxes) * mask_positive
......
...@@ -143,7 +143,11 @@ class TaskAlignedAssigner(nn.Layer): ...@@ -143,7 +143,11 @@ class TaskAlignedAssigner(nn.Layer):
gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0) gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4]) assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])
assigned_scores = F.one_hot(assigned_labels, num_classes) assigned_scores = F.one_hot(assigned_labels, num_classes + 1)
ind = list(range(num_classes + 1))
ind.remove(bg_index)
assigned_scores = paddle.index_select(
assigned_scores, paddle.to_tensor(ind), axis=-1)
# rescale alignment metrics # rescale alignment metrics
alignment_metrics *= mask_positive alignment_metrics *= mask_positive
max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True) max_metrics_per_instance = alignment_metrics.max(axis=-1, keepdim=True)
......
...@@ -331,7 +331,8 @@ class PPYOLOEHead(nn.Layer): ...@@ -331,7 +331,8 @@ class PPYOLOEHead(nn.Layer):
assigned_bboxes /= stride_tensor assigned_bboxes /= stride_tensor
# cls loss # cls loss
if self.use_varifocal_loss: if self.use_varifocal_loss:
one_hot_label = F.one_hot(assigned_labels, self.num_classes) one_hot_label = F.one_hot(assigned_labels,
self.num_classes + 1)[..., :-1]
loss_cls = self._varifocal_loss(pred_scores, assigned_scores, loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
one_hot_label) one_hot_label)
else: else:
......
...@@ -80,7 +80,7 @@ class DETRLoss(nn.Layer): ...@@ -80,7 +80,7 @@ class DETRLoss(nn.Layer):
target_label = target_label.reshape([bs, num_query_objects]) target_label = target_label.reshape([bs, num_query_objects])
if self.use_focal_loss: if self.use_focal_loss:
target_label = F.one_hot(target_label, target_label = F.one_hot(target_label,
self.num_classes + 1)[:, :, :-1] self.num_classes + 1)[..., :-1]
return { return {
'loss_class': self.loss_coeff['class'] * sigmoid_focal_loss( 'loss_class': self.loss_coeff['class'] * sigmoid_focal_loss(
logits, target_label, num_gts / num_query_objects) logits, target_label, num_gts / num_query_objects)
......
...@@ -26,7 +26,7 @@ warnings.filterwarnings("ignore") ...@@ -26,7 +26,7 @@ warnings.filterwarnings("ignore")
__all__ = [ __all__ = [
'merge_matches', 'merge_matches',
'linear_assignment', 'linear_assignment',
'cython_bbox_ious', 'bbox_ious',
'iou_distance', 'iou_distance',
'embedding_distance', 'embedding_distance',
'fuse_motion', 'fuse_motion',
...@@ -68,22 +68,28 @@ def linear_assignment(cost_matrix, thresh): ...@@ -68,22 +68,28 @@ def linear_assignment(cost_matrix, thresh):
return matches, unmatched_a, unmatched_b return matches, unmatched_a, unmatched_b
def cython_bbox_ious(atlbrs, btlbrs): def bbox_ious(atlbrs, btlbrs):
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float) boxes = np.ascontiguousarray(atlbrs, dtype=np.float)
if ious.size == 0: query_boxes = np.ascontiguousarray(btlbrs, dtype=np.float)
N = boxes.shape[0]
K = query_boxes.shape[0]
ious = np.zeros((N, K), dtype=boxes.dtype)
if N * K == 0:
return ious return ious
try:
import cython_bbox for k in range(K):
except Exception as e: box_area = ((query_boxes[k, 2] - query_boxes[k, 0] + 1) *
print('cython_bbox not found, please install cython_bbox.' (query_boxes[k, 3] - query_boxes[k, 1] + 1))
'for example: `pip install cython_bbox`.') for n in range(N):
raise e iw = (min(boxes[n, 2], query_boxes[k, 2]) - max(
boxes[n, 0], query_boxes[k, 0]) + 1)
ious = cython_bbox.bbox_overlaps( if iw > 0:
np.ascontiguousarray( ih = (min(boxes[n, 3], query_boxes[k, 3]) - max(
atlbrs, dtype=np.float), boxes[n, 1], query_boxes[k, 1]) + 1)
np.ascontiguousarray( if ih > 0:
btlbrs, dtype=np.float)) ua = float((boxes[n, 2] - boxes[n, 0] + 1) * (boxes[
n, 3] - boxes[n, 1] + 1) + box_area - iw * ih)
ious[n, k] = iw * ih / ua
return ious return ious
...@@ -98,7 +104,7 @@ def iou_distance(atracks, btracks): ...@@ -98,7 +104,7 @@ def iou_distance(atracks, btracks):
else: else:
atlbrs = [track.tlbr for track in atracks] atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks] btlbrs = [track.tlbr for track in btracks]
_ious = cython_bbox_ious(atlbrs, btlbrs) _ious = bbox_ious(atlbrs, btlbrs)
cost_matrix = 1 - _ious cost_matrix = 1 - _ious
return cost_matrix return cost_matrix
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册