Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
7e99af55
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e99af55
编写于
5月 25, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments
上级
7430d305
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
23 addition
and
19 deletion
+23
-19
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+23
-19
未找到文件。
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
7e99af55
...
...
@@ -60,7 +60,7 @@ class IScanner(object):
"""
pass
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
def
finish_pre_scan
(
self
,
argument
):
"""
Finish first scan pass. Allocate the memory.
...
...
@@ -103,23 +103,29 @@ class DenseScanner(IScanner):
def
pre_scan
(
self
,
dat
):
self
.
__height__
+=
1
if
self
.
__shape__
is
None
:
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input cannot be greater than 3."
)
else
:
if
self
.
__shape__
!=
numpy
.
array
(
dat
).
shape
:
raise
ValueError
(
"The data shape must be same in one mini-batch."
)
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input is greater than 3."
)
def
finish_pre_scan
(
self
,
argument
):
dim
=
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
__shape__
)
if
len
(
self
.
__shape__
)
==
1
:
assert
dim
==
self
.
input_type
.
dim
if
len
(
self
.
__shape__
)
==
1
and
dim
!=
self
.
input_type
.
dim
:
raise
ValueError
(
"The data size must be equal to it in data layer."
)
self
.
__mat__
=
numpy
.
ndarray
(
shape
=
(
self
.
__height__
,
dim
),
dtype
=
numpy
.
float32
)
self
.
__height__
=
0
def
scan
(
self
,
dat
):
if
isinstance
(
dat
,
numpy
.
ndarray
):
assert
self
.
__shape__
==
dat
.
shape
dat
=
dat
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
d
at
# It's better to use NumPy array for speed.
d
=
numpy
.
array
(
dat
)
d
=
d
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
d
self
.
__height__
+=
1
def
finish_scan
(
self
,
argument
):
...
...
@@ -136,6 +142,7 @@ class DenseScanner(IScanner):
h
,
w
=
self
.
__shape__
[
-
2
:]
argument
.
setSlotFrameHeight
(
self
.
pos
,
h
)
argument
.
setSlotFrameWidth
(
self
.
pos
,
w
)
self
.
__shape__
=
None
class
SparseBinaryScanner
(
IScanner
):
...
...
@@ -186,7 +193,7 @@ class IndexScanner(IScanner):
def
pre_scan
(
self
,
dat
):
self
.
__idx__
+=
1
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
def
finish_pre_scan
(
self
,
argument
):
self
.
__ids__
=
[
0
]
*
self
.
__idx__
self
.
__idx__
=
0
...
...
@@ -211,8 +218,8 @@ class SequenceScanner(IScanner):
for
each
in
dat
:
self
.
__inner_scanner__
.
pre_scan
(
each
)
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
,
dat
)
def
finish_pre_scan
(
self
,
argument
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
)
def
scan
(
self
,
dat
):
self
.
__seq__
.
append
(
self
.
__seq__
[
-
1
]
+
self
.
get_size
(
dat
))
...
...
@@ -253,11 +260,8 @@ class DataProviderConverter(object):
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
scanner
.
pre_scan
(
each_step
)
# Some scanners, like dense scanner, pre-allocate memory for mini-batch
# in finish_pre_scan function. The dat[0] is used to calculate the size
# of input data.
for
scanner
,
each_feature
in
itertools
.
izip
(
scanners
,
dat
[
0
]):
scanner
.
finish_pre_scan
(
argument
,
each_feature
)
for
scanner
in
scanners
:
scanner
.
finish_pre_scan
(
argument
)
for
each_sample
in
dat
:
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录