提交 7430d305 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into variable_input

......@@ -19,7 +19,7 @@ set(PROJ_ROOT ${CMAKE_CURRENT_SOURCE_DIR})
include(system)
project(paddle CXX C)
project(paddle CXX C Go)
find_package(Sphinx)
if(NOT CMAKE_CROSSCOMPILING)
......
......@@ -33,6 +33,15 @@ RUN apt-get update && \
clang-3.8 llvm-3.8 libclang-3.8-dev && \
apt-get clean -y
# Install Go
RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C /usr/local -xzf go.tgz && \
mkdir /root/gopath && \
rm go.tgz
ENV GOROOT=/usr/local/go GOPATH=/root/gopath
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=${PATH}:${GOROOT}/bin
# git credential to skip password typing
RUN git config --global credential.helper store
......
FROM ubuntu:16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ARG UBUNTU_MIRROR
RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
ENV HOME=/root \
ANDROID_NDK_HOME=/opt/android-ndk-linux \
ANDROID_STANDALONE_TOOLCHAIN=/opt/android-toolchain-gcc
RUN apt-get update && \
apt-get install -y \
git python-dev python-pip python-numpy \
wget curl tar unzip gcc g++ locales clang-format-3.8 swig cmake && \
apt-get clean -y
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN pip install --upgrade pip && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel sphinx && \
pip install pre-commit
# Android NDK
RUN mkdir /opt/android-ndk-tmp && \
cd /opt/android-ndk-tmp && \
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \
unzip -q android-ndk-r14b-linux-x86_64.zip && \
mv android-ndk-r14b ${ANDROID_NDK_HOME} && \
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-21 --install-dir=${ANDROID_STANDALONE_TOOLCHAIN} && \
rm -rf /opt/android-ndk-tmp && \
rm -rf ${ANDROID_NDK_HOME}
CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"]
if(NOT CMAKE_Go_COMPILER)
if(NOT $ENV{GO_COMPILER} STREQUAL "")
get_filename_component(CMAKE_Go_COMPILER_INIT $ENV{GO_COMPILER} PROGRAM PROGRAM_ARGS CMAKE_Go_FLAGS_ENV_INIT)
if(CMAKE_Go_FLAGS_ENV_INIT)
set(CMAKE_Go_COMPILER_ARG1 "${CMAKE_Go_FLAGS_ENV_INIT}" CACHE STRING "First argument to Go compiler")
endif()
if(NOT EXISTS ${CMAKE_Go_COMPILER_INIT})
message(SEND_ERROR "Could not find compiler set in environment variable GO_COMPILER:\n$ENV{GO_COMPILER}.")
endif()
endif()
set(Go_BIN_PATH
$ENV{GOPATH}
$ENV{GOROOT}
$ENV{GOROOT}/bin
$ENV{GO_COMPILER}
/usr/bin
/usr/local/bin
)
if(CMAKE_Go_COMPILER_INIT)
set(CMAKE_Go_COMPILER ${CMAKE_Go_COMPILER_INIT} CACHE PATH "Go Compiler")
else()
find_program(CMAKE_Go_COMPILER
NAMES go
PATHS ${Go_BIN_PATH}
)
if(CMAKE_Go_COMPILER)
EXEC_PROGRAM(${CMAKE_Go_COMPILER} ARGS version OUTPUT_VARIABLE GOLANG_VERSION)
STRING(REGEX MATCH "go[0-9]+[.0-9]*[ /A-Za-z0-9]*" VERSION "${GOLANG_VERSION}")
message("-- The Golang compiler identification is ${VERSION}")
message("-- Check for working Golang compiler: ${CMAKE_Go_COMPILER}")
endif()
endif()
endif()
mark_as_advanced(CMAKE_Go_COMPILER)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/cmake/CMakeGoCompiler.cmake.in
${CMAKE_PLATFORM_INFO_DIR}/CMakeGoCompiler.cmake @ONLY)
set(CMAKE_Go_COMPILER_ENV_VAR "GO_COMPILER")
set(CMAKE_Go_COMPILER "@CMAKE_Go_COMPILER@")
set(CMAKE_Go_COMPILER_LOADED 1)
set(CMAKE_Go_SOURCE_FILE_EXTENSIONS go)
set(CMAKE_Go_LINKER_PREFERENCE 40)
set(CMAKE_Go_OUTPUT_EXTENSION .o)
set(CMAKE_Go_OUTPUT_EXTENSION_REPLACE 1)
set(CMAKE_Go_COMPILER_ENV_VAR "GO_COMPILER")
if(NOT CMAKE_Go_COMPILE_OBJECT)
set(CMAKE_Go_COMPILE_OBJECT "go tool compile -l -N -o <OBJECT> <SOURCE> ")
endif()
if(NOT CMAKE_Go_LINK_EXECUTABLE)
set(CMAKE_Go_LINK_EXECUTABLE "go tool link -o <TARGET> <OBJECTS> ")
endif()
set(CMAKE_Go_COMPILER_WORKS 1 CACHE INTERNAL "")
......@@ -27,6 +27,7 @@
#
# cmake_parse_arguments can help us to achieve this goal.
# https://cmake.org/cmake/help/v3.0/module/CMakeParseArguments.html
#
# cc_library parses tensor.cc and figures out that target also depend on tensor.h.
# cc_library(tensor
......@@ -139,3 +140,78 @@ function(nv_test TARGET_NAME)
endif()
add_test(${TARGET_NAME} ${TARGET_NAME})
endfunction(nv_test)
set(GOPATH "${CMAKE_CURRENT_BINARY_DIR}/go")
file(MAKE_DIRECTORY ${GOPATH})
# Because api.go defines a GO wrapper to ops and tensor, it depends on
# both. This implies that if any of tensor.{h,cc}, ops.{h,cu}, or
# api.go is changed, api need to be re-built.
# go_library(api
# SRCS
# api.go
# DEPS
# tensor # Because ops depend on tensor, this line is optional.
# ops)
function(go_library TARGET_NAME)
set(options OPTIONAL)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(go_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if (${go_library_OPTIONAL} STREQUAL "SHARED")
set(BUILD_MODE "-buildmode=c-shared")
if(APPLE)
set(LIB_NAME "lib${TARGET_NAME}.dylib")
else()
set(LIB_NAME "lib${TARGET_NAME}.so")
endif()
else()
set(BUILD_MODE "-buildmode=c-archive")
set(LIB_NAME "lib${TARGET_NAME}.a")
endif()
add_custom_command(OUTPUT ${TARGET_NAME}_timestamp
COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} build ${BUILD_MODE}
-o "${CMAKE_CURRENT_BINARY_DIR}/${LIB_NAME}"
${go_library_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR})
add_custom_target(${TARGET_NAME}_lib ALL DEPENDS ${TARGET_NAME}_timestamp ${go_library_DEPS})
add_library(${TARGET_NAME} STATIC IMPORTED)
set_property(TARGET ${TARGET_NAME} PROPERTY
IMPORTED_LOCATION "${CMAKE_CURRENT_BINARY_DIR}/${LIB_NAME}")
add_dependencies(${TARGET_NAME} ${TARGET_NAME}_lib)
endfunction(go_library)
function(go_binary TARGET_NAME)
set(options OPTIONAL)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(go_binary "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_custom_command(OUTPUT ${TARGET_NAME}_timestamp
COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} build
-o "${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}"
${go_library_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR})
add_custom_target(${TARGET_NAME} ALL DEPENDS ${TARGET_NAME}_timestamp ${go_binary_DEPS})
install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME} DESTINATION bin)
endfunction(go_binary)
function(go_test TARGET_NAME)
set(options OPTIONAL)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(go_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_custom_command(OUTPUT ${TARGET_NAME}_timestamp
COMMAND env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} test
-c -o "${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}"
${go_test_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR})
add_custom_target(${TARGET_NAME} ALL DEPENDS ${TARGET_NAME}_timestamp ${go_test_DEPS})
add_test(${TARGET_NAME} ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME})
endfunction(go_test)
# go_extern will download extern go project.
# go_extern(target_name extern_source)
# go_extern(go_redis github.com/hoisie/redis)
function(go_extern TARGET_NAME)
add_custom_target(${TARGET_NAME} env GOPATH=${GOPATH} ${CMAKE_Go_COMPILER} get ${ARGN})
endfunction(go_extern)
......@@ -21,9 +21,12 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
src_forward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size)
name='src_forward_gru', input=src_embedding, size=encoder_size)
src_backward = paddle.networks.simple_gru(
input=src_embedding, size=encoder_size, reverse=True)
name='src_backward_gru',
input=src_embedding,
size=encoder_size,
reverse=True)
encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
#### Decoder
......@@ -34,7 +37,9 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
backward_first = paddle.layer.first_seq(input=src_backward)
with paddle.layer.mixed(
size=decoder_size, act=paddle.activation.Tanh()) as decoder_boot:
name="decoder_boot_mixed",
size=decoder_size,
act=paddle.activation.Tanh()) as decoder_boot:
decoder_boot += paddle.layer.full_matrix_projection(
input=backward_first)
......@@ -44,11 +49,17 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)
context = paddle.networks.simple_attention(
name="simple_attention",
encoded_sequence=enc_vec,
encoded_proj=enc_proj,
decoder_state=decoder_mem)
with paddle.layer.mixed(size=decoder_size * 3) as decoder_inputs:
with paddle.layer.mixed(
name="input_recurrent",
size=decoder_size * 3,
# enable error clipping
layer_attr=paddle.attr.ExtraAttr(
error_clipping_threshold=100.0)) as decoder_inputs:
decoder_inputs += paddle.layer.full_matrix_projection(input=context)
decoder_inputs += paddle.layer.full_matrix_projection(
input=current_word)
......@@ -57,9 +68,12 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
name='gru_decoder',
input=decoder_inputs,
output_mem=decoder_mem,
# uncomment to enable local threshold for gradient clipping
# param_attr=paddle.attr.ParamAttr(gradient_clipping_threshold=9.9),
size=decoder_size)
with paddle.layer.mixed(
name="gru_step_output",
size=target_dict_dim,
bias_attr=True,
act=paddle.activation.Softmax()) as out:
......@@ -125,7 +139,13 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
def main():
paddle.init(use_gpu=False, trainer_count=1)
paddle.init(
use_gpu=False,
trainer_count=1,
# log gradient clipping info
log_clipping=True,
# log error clipping info
log_error_clipping=True)
is_generating = False
# source and target dict dim.
......@@ -140,6 +160,8 @@ def main():
# define optimize method and trainer
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
# uncomment to enable global threshold for gradient clipping
# gradient_clipping_threshold=10.0,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
......
......@@ -9,6 +9,10 @@ add_subdirectory(pserver)
add_subdirectory(trainer)
add_subdirectory(scripts)
if(CMAKE_Go_COMPILER)
add_subdirectory(go)
endif()
find_package(Boost QUIET)
if(Boost_FOUND)
......
......@@ -58,10 +58,16 @@ target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}
link_paddle_exe(paddle_capi_shared)
# install library & headers.
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
install(TARGETS paddle_capi_shared DESTINATION lib)
if(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(TARGETS paddle_capi_shared DESTINATION lib)
endif(ANDROID)
# this variable used for unittest
set(PADDLE_CAPI_INC_PATH
......
include_directories(${CMAKE_CURRENT_BINARY_DIR})
go_library(adder SRCS adder.go)
cc_test(cgo_test
SRCS
cgo_test.cc
DEPS
adder)
package main
import "C"
//export GoAdder
func GoAdder(x, y int) int {
return x + y
}
func main() {} // Required but ignored
......@@ -2,12 +2,9 @@ cmake_minimum_required(VERSION 3.0)
if(GTEST_INCLUDE_DIR AND GTEST_LIBRARIES)
message("-- Found gtest (include: ${GTEST_INCLUDE_DIR}, library: ${GTEST_LIBRARIES})")
else()
# find #include <majel/xx.h>
get_filename_component(PARENT_DIR ${CMAKE_CURRENT_SOURCE_DIR} DIRECTORY)
include_directories(${PARENT_DIR})
else()
# find cmake directory modules
get_filename_component(PARENT_DIR ${CMAKE_CURRENT_SOURCE_DIR} DIRECTORY)
get_filename_component(PARENT_DIR ${PARENT_DIR} DIRECTORY)
get_filename_component(PARENT_DIR ${PARENT_DIR} DIRECTORY)
......
cmake_minimum_required(VERSION 3.0)
include_directories(/env/gopath/src/github.com/PaddlePaddle/Paddle/paddle/go/cclient/build/)
include_directories(${CMAKE_BINARY_DIR})
add_executable(main main.c)
add_dependencies(main client)
set (CMAKE_EXE_LINKER_FLAGS "-pthread")
target_link_libraries(main /env/gopath/src/github.com/PaddlePaddle/Paddle/paddle/go/cclient/build/libclient.a) # ${GTEST_LIBRARIES})
target_link_libraries(main ${CMAKE_BINARY_DIR}/libclient.a)
#include <iostream>
#include "gtest/gtest.h"
#include "libadder.h"
TEST(Cgo, Invoke) { EXPECT_EQ(GoAdder(30, 12), 42); }
package main
import (
"flag"
"net"
"net/http"
"net/rpc"
"strconv"
"github.com/PaddlePaddle/Paddle/paddle/go/pserver"
)
func main() {
port := flag.Int("p", 0, "port of the pserver")
flag.Parse()
s := pserver.NewService()
err := rpc.Register(s)
if err != nil {
panic(err)
}
rpc.HandleHTTP()
l, err := net.Listen("tcp", ":"+strconv.Itoa(*port))
if err != nil {
panic(err)
}
err = http.Serve(l, nil)
if err != nil {
panic(err)
}
}
package pserver
// ElementType is the type of elements of a Parameter.
type ElementType int
// Supported element types
const (
Int32 ElementType = iota
UInt32
Int64
UInt64
Float32
Float64
)
// Parameter is a piece of data to sync with the parameter server.
type Parameter struct {
Name string
ElementType ElementType
Content []byte
}
// ParameterWithConfig contains the parameter and the configuration.
type ParameterWithConfig struct {
Param Parameter
Config []byte // parameter configuration in Proto Buffer format
}
// Gradient is the gradient of the parameter.
type Gradient Parameter
// Client is the client to parameter servers.
type Client struct {
}
......
#include <stdlib.h>
#include "optimizer.h"
typedef int (*update_func)(void*, void*, paddle_element_type, const void*, int);
typedef void (*release_func)(void*);
typedef struct paddle_optimizer {
update_func update;
release_func release;
void* optimizer;
} paddle_optimizer;
void paddle_release_optimizer(paddle_optimizer* o) {
o->release(o->optimizer);
free(o);
}
int paddle_update_parameter(paddle_optimizer* o,
void* buffer,
paddle_element_type element_type,
const void* gradient,
int num_bytes) {
return o->update(o->optimizer, buffer, element_type, gradient, num_bytes);
}
typedef struct { double learning_rate; } SGD_optimizer;
int update_SGD(void* optimizer,
void* buffer,
paddle_element_type element_type,
const void* gradient,
int num_bytes) {
SGD_optimizer* o = (SGD_optimizer*)optimizer;
// TODO
return 0;
}
void release_SGD(void* optimizer) {
SGD_optimizer* o = (SGD_optimizer*)optimizer;
// nothing allocated on heap
}
paddle_optimizer* paddle_create_SGD_optimizer(double learning_rate) {
SGD_optimizer* impl = (SGD_optimizer*)malloc(sizeof(SGD_optimizer));
impl->learning_rate = learning_rate;
paddle_optimizer* opt = (paddle_optimizer*)malloc(sizeof(paddle_optimizer));
opt->update = update_SGD;
opt->release = release_SGD;
opt->optimizer = impl;
return opt;
}
package pserver
/*
#include "optimizer.h"
*/
import "C"
import (
"fmt"
"unsafe"
)
type optimizerType int
const (
sgd optimizerType = iota
)
var nullPtr = unsafe.Pointer(uintptr(0))
type optimizer struct {
opt *C.struct_paddle_optimizer
}
func newOptimizer(t optimizerType, learning_rate float64) *optimizer {
o := &optimizer{}
o.opt = C.paddle_create_SGD_optimizer(C.double(learning_rate))
return o
}
func (o *optimizer) UpdateParameter(p Parameter, g Gradient) error {
if len(p.Content) != len(g.Content) {
return fmt.Errorf("parameter and gradient length not match, parameter: %d, gradient: %d", len(p.Content), len(g.Content))
}
if p.ElementType != g.ElementType {
return fmt.Errorf("parameter and gradient element type not match, parameter: %v, gradient: %v", p.ElementType, g.ElementType)
}
r := C.paddle_update_parameter(o.opt, unsafe.Pointer(&p.Content[0]), C.paddle_element_type(p.ElementType), unsafe.Pointer(&g.Content[0]), C.int(len(g.Content)))
if r != 0 {
return fmt.Errorf("optimizer update returned error code: %d", r)
}
return nil
}
func (o *optimizer) Cleanup() {
if unsafe.Pointer(o.opt) != nullPtr {
C.paddle_release_optimizer(o.opt)
o.opt = (*C.struct_paddle_optimizer)(nullPtr)
}
}
#ifndef PADDLE_PSERVER_OPTIMIZER_H
#define PADDLE_PSERVER_OPTIMIZER_H
typedef enum {
PADDLE_ELEMENT_TYPE_INT32 = 0,
PADDLE_ELEMENT_TYPE_UINT32 = 1,
PADDLE_ELEMENT_TYPE_INT64 = 2,
PADDLE_ELEMENT_TYPE_UINT64 = 3,
PADDLE_ELEMENT_TYPE_FLOAT32 = 4,
PADDLE_ELEMENT_TYPE_FLOAT64 = 5,
} paddle_element_type;
struct paddle_optimizer;
struct paddle_optimizer* paddle_create_SGD_optimizer(double learning_rate);
void paddle_release_optimizer(struct paddle_optimizer* o);
int paddle_update_parameter(struct paddle_optimizer* o,
void* buffer,
paddle_element_type element_type,
const void* gradient,
int num_bytes);
#endif /* PADDLE_PSERVER_OPTIMIZER_H */
package pserver
import "testing"
func TestSGDCreateRelease(t *testing.T) {
o := newOptimizer(sgd, 1)
o.Cleanup()
}
package pserver
import (
"errors"
"fmt"
"sync"
)
// ElementType is the type of elements of a Parameter.
type ElementType int
var ErrAlreadyInitialized = errors.New("pserver already initialized")
var ErrUninitialized = errors.New("pserver not fully initialized")
// Supported element types
const (
Int32 ElementType = iota
UInt32
Int64
UInt64
Float32
Float64
)
// Parameter is a piece of data to sync with the parameter server.
type Parameter struct {
Name string
ElementType ElementType
Content []byte
}
// ParameterWithConfig contains the parameter and the configuration.
type ParameterWithConfig struct {
Param Parameter
Config []byte // parameter configuration in Proto Buffer format
}
// Gradient is the gradient of the parameter.
type Gradient Parameter
// Service is the RPC service for pserver.
type Service struct {
initialized chan struct{}
mu sync.Mutex
opt *optimizer
paramMap map[string]Parameter
}
// NewService creates a new service.
func NewService() *Service {
s := &Service{}
s.paramMap = make(map[string]Parameter)
s.initialized = make(chan struct{})
return s
}
// BeginInitParams tells the parameter server that the parameter
// initialization has begun.
func (s *Service) BeginInitParams(config []byte, dummy *int) error {
select {
case <-s.initialized:
return ErrAlreadyInitialized
default:
}
s.mu.Lock()
defer s.mu.Unlock()
if s.opt != nil {
s.opt.Cleanup()
}
// TODO(helin): parse learning rate from config
s.opt = newOptimizer(sgd, 0.01)
return nil
}
// InitParam initializes a parameter.
func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, dummy *int) error {
select {
case <-s.initialized:
return ErrAlreadyInitialized
default:
}
// TODO(helin): parse parameter config
s.mu.Lock()
defer s.mu.Unlock()
// TODO(helin): check if paramWithConfigs.Param.Content is
// properly memory aligned, if not, make copy to a memory
// aligned region.
s.paramMap[paramWithConfigs.Param.Name] = paramWithConfigs.Param
return nil
}
// FinishInitParams tells the parameter server that the parameter
// initialization has finished.
func (s *Service) FinishInitParams(dummy0 int, dummy1 *int) error {
select {
case <-s.initialized:
return ErrAlreadyInitialized
default:
}
close(s.initialized)
return nil
}
// SendGrads sends gradients to parameter servers for parameter
// optimization.
func (s *Service) SendGrads(grads []Gradient, dummy *int) error {
select {
case <-s.initialized:
default:
return ErrUninitialized
}
count := len(grads)
if count == 0 {
return nil
}
s.mu.Lock()
defer s.mu.Unlock()
for _, g := range grads {
if _, ok := s.paramMap[g.Name]; !ok {
return fmt.Errorf("parameter: %s does not exist", g.Name)
}
}
errCh := make(chan error, count)
for _, g := range grads {
go func(p Parameter, g Gradient) {
err := s.opt.UpdateParameter(p, g)
errCh <- err
}(s.paramMap[g.Name], g)
}
recv := 0
for err := range errCh {
if err != nil {
return err
}
recv++
if recv == count {
break
}
}
return nil
}
// GetParams gets parameters from the parameter server.
func (s *Service) GetParams(names []string, parameters *[]Parameter) error {
<-s.initialized
s.mu.Lock()
defer s.mu.Unlock()
for _, n := range names {
if _, ok := s.paramMap[n]; !ok {
return fmt.Errorf("parameter: %s does not exist", n)
}
}
*parameters = make([]Parameter, len(names))
for i, n := range names {
// The parameter content (a byte slice) may change
// during RPC serialization due to write from other
// goroutine, we allow it since mini-batch based deep
// learning optimization methods are stochastic in
// nature. This race condition is allowed deliberately
// to save the program from making a copy of the
// paramter content.
(*parameters)[i] = s.paramMap[n]
}
return nil
}
// Save tells the parameter server to save parameters.
func (s *Service) Save(path string, dummy *int) error {
<-s.initialized
// TODO
return nil
}
package pserver_test
import (
"reflect"
"sync"
"testing"
"github.com/PaddlePaddle/Paddle/paddle/go/pserver"
)
func TestFull(t *testing.T) {
s := pserver.NewService()
var dummy int
err := s.BeginInitParams(nil, &dummy)
if err != nil {
t.FailNow()
}
var p pserver.Parameter
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err = s.InitParam(pserver.ParameterWithConfig{p, nil}, &dummy)
if err != nil {
t.FailNow()
}
var p1 pserver.Parameter
p1.Name = "param_b"
p1.Content = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
p1.ElementType = pserver.Float32
err = s.InitParam(pserver.ParameterWithConfig{p1, nil}, &dummy)
if err != nil {
t.FailNow()
}
err = s.FinishInitParams(0, &dummy)
if err != nil {
t.FailNow()
}
var params []pserver.Parameter
err = s.GetParams([]string{"param_b", "param_a"}, &params)
if err != nil {
t.FailNow()
}
if len(params) != 2 || !reflect.DeepEqual(params[0], p1) || !reflect.DeepEqual(params[0], p1) {
t.FailNow()
}
grads := []pserver.Gradient{pserver.Gradient(p1), pserver.Gradient(p)}
err = s.SendGrads(grads, &dummy)
if err != nil {
t.FailNow()
}
var params1 []pserver.Parameter
err = s.GetParams([]string{"param_b", "param_a"}, &params1)
if err != nil {
t.FailNow()
}
if len(params) != 2 {
t.FailNow()
}
// don't compare content, since it's already changed by
// gradient update.
params1[0].Content = nil
params1[0].Content = nil
p.Content = nil
p1.Content = nil
if !reflect.DeepEqual(params1[0], p1) || !reflect.DeepEqual(params1[0], p1) {
t.FailNow()
}
}
func TestMultipleInit(t *testing.T) {
s := pserver.NewService()
var dummy int
err := s.BeginInitParams(nil, &dummy)
if err != nil {
t.FailNow()
}
// this is fine, it's possible for client to call init
// multiple times.
err = s.BeginInitParams(nil, &dummy)
if err != nil {
t.FailNow()
}
err = s.FinishInitParams(0, &dummy)
if err != nil {
t.FailNow()
}
err = s.FinishInitParams(0, &dummy)
if err != pserver.ErrAlreadyInitialized {
t.FailNow()
}
err = s.BeginInitParams(nil, &dummy)
if err != pserver.ErrAlreadyInitialized {
t.FailNow()
}
}
func TestUninitialized(t *testing.T) {
s := pserver.NewService()
var dummy int
err := s.SendGrads(nil, &dummy)
if err != pserver.ErrUninitialized {
t.FailNow()
}
}
func TestBlockUntilInitialized(t *testing.T) {
s := pserver.NewService()
ch := make(chan struct{}, 2)
var wg sync.WaitGroup
wg.Add(1)
go func() {
var params []pserver.Parameter
err := s.GetParams(nil, &params)
if err != nil {
t.FailNow()
}
wg.Done()
ch <- struct{}{}
}()
wg.Add(1)
go func() {
var dummy int
err := s.Save("", &dummy)
if err != nil {
t.FailNow()
}
wg.Done()
ch <- struct{}{}
}()
var dummy int
err := s.BeginInitParams(nil, &dummy)
if err != nil {
t.FailNow()
}
select {
case <-ch:
// some function returned before initialization is completed.
t.FailNow()
default:
}
err = s.FinishInitParams(0, &dummy)
if err != nil {
t.FailNow()
}
wg.Wait()
}
# RecordIO
## Write
```go
f, e := os.Create("a_file.recordio")
w := recordio.NewWriter(f)
w.Write([]byte("Hello"))
w.Write([]byte("World!"))
w.Close()
```
## Read
1. Load chunk index:
```go
f, e := os.Open("a_file.recordio")
idx, e := recordio.LoadIndex(f)
fmt.Println("Total records: ", idx.Len())
```
2. Create one or more scanner to read a range of records. The
following example reads the range
[1, 3), i.e., the second and the third records:
```go
f, e := os.Open("a_file.recordio")
s := recrodio.NewScanner(f, idx, 1, 3)
for s.Scan() {
fmt.Println(string(s.Record()))
}
if s.Err() != nil && s.Err() != io.EOF {
log.Fatalf("Something wrong with scanning: %v", e)
}
```
package recordio
import (
"bytes"
"compress/gzip"
"encoding/binary"
"fmt"
"hash/crc32"
"io"
"github.com/golang/snappy"
)
// A Chunk contains the Header and optionally compressed records. To
// create a chunk, just use ch := &Chunk{}.
type Chunk struct {
records [][]byte
numBytes int // sum of record lengths.
}
func (ch *Chunk) add(record []byte) {
ch.records = append(ch.records, record)
ch.numBytes += len(record)
}
// dump the chunk into w, and clears the chunk and makes it ready for
// the next add invocation.
func (ch *Chunk) dump(w io.Writer, compressorIndex int) error {
// NOTE: don't check ch.numBytes instead, because empty
// records are allowed.
if len(ch.records) == 0 {
return nil
}
// Write raw records and their lengths into data buffer.
var data bytes.Buffer
for _, r := range ch.records {
var rs [4]byte
binary.LittleEndian.PutUint32(rs[:], uint32(len(r)))
if _, e := data.Write(rs[:]); e != nil {
return fmt.Errorf("Failed to write record length: %v", e)
}
if _, e := data.Write(r); e != nil {
return fmt.Errorf("Failed to write record: %v", e)
}
}
compressed, e := compressData(&data, compressorIndex)
if e != nil {
return e
}
// Write chunk header and compressed data.
hdr := &Header{
checkSum: crc32.ChecksumIEEE(compressed.Bytes()),
compressor: uint32(compressorIndex),
compressedSize: uint32(compressed.Len()),
numRecords: uint32(len(ch.records)),
}
if _, e := hdr.write(w); e != nil {
return fmt.Errorf("Failed to write chunk header: %v", e)
}
if _, e := w.Write(compressed.Bytes()); e != nil {
return fmt.Errorf("Failed to write chunk data: %v", e)
}
// Clear the current chunk.
ch.records = nil
ch.numBytes = 0
return nil
}
type noopCompressor struct {
*bytes.Buffer
}
func (c *noopCompressor) Close() error {
return nil
}
func compressData(src io.Reader, compressorIndex int) (*bytes.Buffer, error) {
compressed := new(bytes.Buffer)
var compressor io.WriteCloser
switch compressorIndex {
case NoCompression:
compressor = &noopCompressor{compressed}
case Snappy:
compressor = snappy.NewBufferedWriter(compressed)
case Gzip:
compressor = gzip.NewWriter(compressed)
default:
return nil, fmt.Errorf("Unknown compression algorithm: %d", compressorIndex)
}
if _, e := io.Copy(compressor, src); e != nil {
return nil, fmt.Errorf("Failed to compress chunk data: %v", e)
}
compressor.Close()
return compressed, nil
}
// parse the specified chunk from r.
func parseChunk(r io.ReadSeeker, chunkOffset int64) (*Chunk, error) {
var e error
var hdr *Header
if _, e = r.Seek(chunkOffset, io.SeekStart); e != nil {
return nil, fmt.Errorf("Failed to seek chunk: %v", e)
}
hdr, e = parseHeader(r)
if e != nil {
return nil, fmt.Errorf("Failed to parse chunk header: %v", e)
}
var buf bytes.Buffer
if _, e = io.CopyN(&buf, r, int64(hdr.compressedSize)); e != nil {
return nil, fmt.Errorf("Failed to read chunk data: %v", e)
}
if hdr.checkSum != crc32.ChecksumIEEE(buf.Bytes()) {
return nil, fmt.Errorf("Checksum checking failed.")
}
deflated, e := deflateData(&buf, int(hdr.compressor))
if e != nil {
return nil, e
}
ch := &Chunk{}
for i := 0; i < int(hdr.numRecords); i++ {
var rs [4]byte
if _, e = deflated.Read(rs[:]); e != nil {
return nil, fmt.Errorf("Failed to read record length: %v", e)
}
r := make([]byte, binary.LittleEndian.Uint32(rs[:]))
if _, e = deflated.Read(r); e != nil {
return nil, fmt.Errorf("Failed to read a record: %v", e)
}
ch.records = append(ch.records, r)
ch.numBytes += len(r)
}
return ch, nil
}
func deflateData(src io.Reader, compressorIndex int) (*bytes.Buffer, error) {
var e error
var deflator io.Reader
switch compressorIndex {
case NoCompression:
deflator = src
case Snappy:
deflator = snappy.NewReader(src)
case Gzip:
deflator, e = gzip.NewReader(src)
if e != nil {
return nil, fmt.Errorf("Failed to create gzip reader: %v", e)
}
default:
return nil, fmt.Errorf("Unknown compression algorithm: %d", compressorIndex)
}
deflated := new(bytes.Buffer)
if _, e = io.Copy(deflated, deflator); e != nil {
return nil, fmt.Errorf("Failed to deflate chunk data: %v", e)
}
return deflated, nil
}
package recordio
import (
"encoding/binary"
"fmt"
"io"
)
const (
// NoCompression means writing raw chunk data into files.
// With other choices, chunks are compressed before written.
NoCompression = iota
// Snappy had been the default compressing algorithm widely
// used in Google. It compromises between speech and
// compression ratio.
Snappy
// Gzip is a well-known compression algorithm. It is
// recommmended only you are looking for compression ratio.
Gzip
magicNumber uint32 = 0x01020304
defaultCompressor = Snappy
)
// Header is the metadata of Chunk.
type Header struct {
checkSum uint32
compressor uint32
compressedSize uint32
numRecords uint32
}
func (c *Header) write(w io.Writer) (int, error) {
var buf [20]byte
binary.LittleEndian.PutUint32(buf[0:4], magicNumber)
binary.LittleEndian.PutUint32(buf[4:8], c.checkSum)
binary.LittleEndian.PutUint32(buf[8:12], c.compressor)
binary.LittleEndian.PutUint32(buf[12:16], c.compressedSize)
binary.LittleEndian.PutUint32(buf[16:20], c.numRecords)
return w.Write(buf[:])
}
func parseHeader(r io.Reader) (*Header, error) {
var buf [20]byte
if _, e := r.Read(buf[:]); e != nil {
return nil, e
}
if v := binary.LittleEndian.Uint32(buf[0:4]); v != magicNumber {
return nil, fmt.Errorf("Failed to parse magic number")
}
return &Header{
checkSum: binary.LittleEndian.Uint32(buf[4:8]),
compressor: binary.LittleEndian.Uint32(buf[8:12]),
compressedSize: binary.LittleEndian.Uint32(buf[12:16]),
numRecords: binary.LittleEndian.Uint32(buf[16:20]),
}, nil
}
package recordio
import "io"
// Index consists offsets and sizes of the consequetive chunks in a RecordIO file.
type Index struct {
chunkOffsets []int64
chunkLens []uint32
numRecords int // the number of all records in a file.
chunkRecords []int // the number of records in chunks.
}
// LoadIndex scans the file and parse chunkOffsets, chunkLens, and len.
func LoadIndex(r io.ReadSeeker) (*Index, error) {
f := &Index{}
offset := int64(0)
var e error
var hdr *Header
for {
hdr, e = parseHeader(r)
if e != nil {
break
}
f.chunkOffsets = append(f.chunkOffsets, offset)
f.chunkLens = append(f.chunkLens, hdr.numRecords)
f.chunkRecords = append(f.chunkRecords, int(hdr.numRecords))
f.numRecords += int(hdr.numRecords)
offset, e = r.Seek(int64(hdr.compressedSize), io.SeekCurrent)
if e != nil {
break
}
}
if e == io.EOF {
return f, nil
}
return nil, e
}
// NumRecords returns the total number of records in a RecordIO file.
func (r *Index) NumRecords() int {
return r.numRecords
}
// NumChunks returns the total number of chunks in a RecordIO file.
func (r *Index) NumChunks() int {
return len(r.chunkLens)
}
// ChunkIndex return the Index of i-th Chunk.
func (r *Index) ChunkIndex(i int) *Index {
idx := &Index{}
idx.chunkOffsets = []int64{r.chunkOffsets[i]}
idx.chunkLens = []uint32{r.chunkLens[i]}
idx.chunkRecords = []int{r.chunkRecords[i]}
idx.numRecords = idx.chunkRecords[0]
return idx
}
// Locate returns the index of chunk that contains the given record,
// and the record index within the chunk. It returns (-1, -1) if the
// record is out of range.
func (r *Index) Locate(recordIndex int) (int, int) {
sum := 0
for i, l := range r.chunkLens {
sum += int(l)
if recordIndex < sum {
return i, recordIndex - sum + int(l)
}
}
return -1, -1
}
// Scanner scans records in a specified range within [0, numRecords).
type Scanner struct {
reader io.ReadSeeker
index *Index
start, end, cur int
chunkIndex int
chunk *Chunk
err error
}
// NewScanner creates a scanner that sequencially reads records in the
// range [start, start+len). If start < 0, it scans from the
// beginning. If len < 0, it scans till the end of file.
func NewScanner(r io.ReadSeeker, index *Index, start, len int) *Scanner {
if start < 0 {
start = 0
}
if len < 0 || start+len >= index.NumRecords() {
len = index.NumRecords() - start
}
return &Scanner{
reader: r,
index: index,
start: start,
end: start + len,
cur: start - 1, // The intial status required by Scan.
chunkIndex: -1,
chunk: &Chunk{},
}
}
// Scan moves the cursor forward for one record and loads the chunk
// containing the record if not yet.
func (s *Scanner) Scan() bool {
s.cur++
if s.cur >= s.end {
s.err = io.EOF
} else {
if ci, _ := s.index.Locate(s.cur); s.chunkIndex != ci {
s.chunkIndex = ci
s.chunk, s.err = parseChunk(s.reader, s.index.chunkOffsets[ci])
}
}
return s.err == nil
}
// Record returns the record under the current cursor.
func (s *Scanner) Record() []byte {
_, ri := s.index.Locate(s.cur)
return s.chunk.records[ri]
}
// Error returns the error that stopped Scan.
func (s *Scanner) Error() error {
return s.err
}
package recordio
import (
"bytes"
"testing"
"unsafe"
"github.com/stretchr/testify/assert"
)
func TestChunkHead(t *testing.T) {
assert := assert.New(t)
c := &Header{
checkSum: 123,
compressor: 456,
compressedSize: 789,
}
var buf bytes.Buffer
_, e := c.write(&buf)
assert.Nil(e)
cc, e := parseHeader(&buf)
assert.Nil(e)
assert.Equal(c, cc)
}
func TestWriteAndRead(t *testing.T) {
assert := assert.New(t)
data := []string{
"12345",
"1234",
"12"}
var buf bytes.Buffer
w := NewWriter(&buf, 10, NoCompression) // use a small maxChunkSize.
n, e := w.Write([]byte(data[0])) // not exceed chunk size.
assert.Nil(e)
assert.Equal(5, n)
n, e = w.Write([]byte(data[1])) // not exceed chunk size.
assert.Nil(e)
assert.Equal(4, n)
n, e = w.Write([]byte(data[2])) // exeeds chunk size, dump and create a new chunk.
assert.Nil(e)
assert.Equal(n, 2)
assert.Nil(w.Close()) // flush the second chunk.
assert.Nil(w.Writer)
n, e = w.Write([]byte("anything")) // not effective after close.
assert.NotNil(e)
assert.Equal(n, 0)
idx, e := LoadIndex(bytes.NewReader(buf.Bytes()))
assert.Nil(e)
assert.Equal([]uint32{2, 1}, idx.chunkLens)
assert.Equal(
[]int64{0,
int64(4 + // magic number
unsafe.Sizeof(Header{}) +
5 + // first record
4 + // second record
2*4)}, // two record legnths
idx.chunkOffsets)
s := NewScanner(bytes.NewReader(buf.Bytes()), idx, -1, -1)
i := 0
for s.Scan() {
assert.Equal(data[i], string(s.Record()))
i++
}
}
func TestWriteEmptyFile(t *testing.T) {
assert := assert.New(t)
var buf bytes.Buffer
w := NewWriter(&buf, 10, NoCompression) // use a small maxChunkSize.
assert.Nil(w.Close())
assert.Equal(0, buf.Len())
idx, e := LoadIndex(bytes.NewReader(buf.Bytes()))
assert.Nil(e)
assert.Equal(0, idx.NumRecords())
}
package recordio_test
import (
"bytes"
"reflect"
"testing"
"github.com/PaddlePaddle/Paddle/paddle/go/recordio"
)
func TestWriteRead(t *testing.T) {
const total = 1000
var buf bytes.Buffer
w := recordio.NewWriter(&buf, 0, -1)
for i := 0; i < total; i++ {
_, err := w.Write(make([]byte, i))
if err != nil {
t.Fatal(err)
}
}
w.Close()
idx, err := recordio.LoadIndex(bytes.NewReader(buf.Bytes()))
if err != nil {
t.Fatal(err)
}
if idx.NumRecords() != total {
t.Fatal("num record does not match:", idx.NumRecords(), total)
}
s := recordio.NewScanner(bytes.NewReader(buf.Bytes()), idx, -1, -1)
i := 0
for s.Scan() {
if !reflect.DeepEqual(s.Record(), make([]byte, i)) {
t.Fatal("not equal:", len(s.Record()), len(make([]byte, i)))
}
i++
}
if i != total {
t.Fatal("total count not match:", i, total)
}
}
func TestChunkIndex(t *testing.T) {
const total = 1000
var buf bytes.Buffer
w := recordio.NewWriter(&buf, 0, -1)
for i := 0; i < total; i++ {
_, err := w.Write(make([]byte, i))
if err != nil {
t.Fatal(err)
}
}
w.Close()
idx, err := recordio.LoadIndex(bytes.NewReader(buf.Bytes()))
if err != nil {
t.Fatal(err)
}
if idx.NumChunks() != total {
t.Fatal("unexpected chunk num:", idx.NumChunks(), total)
}
for i := 0; i < total; i++ {
newIdx := idx.ChunkIndex(i)
s := recordio.NewScanner(bytes.NewReader(buf.Bytes()), newIdx, -1, -1)
j := 0
for s.Scan() {
if !reflect.DeepEqual(s.Record(), make([]byte, i)) {
t.Fatal("not equal:", len(s.Record()), len(make([]byte, i)))
}
j++
}
if j != 1 {
t.Fatal("unexpected record per chunk:", j)
}
}
}
package recordio
import (
"fmt"
"io"
)
const (
defaultMaxChunkSize = 32 * 1024 * 1024
)
// Writer creates a RecordIO file.
type Writer struct {
io.Writer // Set to nil to mark a closed writer.
chunk *Chunk
maxChunkSize int // total records size, excluding metadata, before compression.
compressor int
}
// NewWriter creates a RecordIO file writer. Each chunk is compressed
// using the deflate algorithm given compression level. Note that
// level 0 means no compression and -1 means default compression.
func NewWriter(w io.Writer, maxChunkSize, compressor int) *Writer {
if maxChunkSize < 0 {
maxChunkSize = defaultMaxChunkSize
}
if compressor < 0 {
compressor = defaultCompressor
}
return &Writer{
Writer: w,
chunk: &Chunk{},
maxChunkSize: maxChunkSize,
compressor: compressor}
}
// Writes a record. It returns an error if Close has been called.
func (w *Writer) Write(record []byte) (int, error) {
if w.Writer == nil {
return 0, fmt.Errorf("Cannot write since writer had been closed")
}
if w.chunk.numBytes+len(record) > w.maxChunkSize {
if e := w.chunk.dump(w.Writer, w.compressor); e != nil {
return 0, e
}
}
w.chunk.add(record)
return len(record), nil
}
// Close flushes the current chunk and makes the writer invalid.
func (w *Writer) Close() error {
e := w.chunk.dump(w.Writer, w.compressor)
w.Writer = nil
return e
}
......@@ -396,6 +396,44 @@ Error __must_check backward(Argument& act) {
}
END_DEFINE_ACTIVATION(exponential)
/**
* @brief Reciprocal Activation.
* \f[
* f(z) = 1/z
* \f]
*/
BEGIN_DEFINE_ACTIVATION(reciprocal)
Error __must_check forward(Argument& act) {
act.value->reciprocal2();
return Error();
}
Error __must_check backward(Argument& act) {
act.grad->dotMulSquare(*act.value);
act.grad->neg();
return Error();
}
END_DEFINE_ACTIVATION(reciprocal)
/**
* @brief Square Root Activation.
* \f[
* f(z) = sqrt(z)
* \f]
*/
BEGIN_DEFINE_ACTIVATION(sqrt)
Error __must_check forward(Argument& act) {
act.value->sqrt2();
return Error();
}
Error __must_check backward(Argument& act) {
act.grad->dotDiv(*act.grad, *act.value);
act.grad->mulScalar(0.5);
return Error();
}
END_DEFINE_ACTIVATION(sqrt)
/**
* @brief Logarithm Activation.
* \f[
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <vector>
#include "paddle/math/Vector.h"
#include "paddle/utils/StringUtil.h"
#include "Evaluator.h"
......@@ -74,6 +75,7 @@ class ChunkEvaluator : public Evaluator {
std::vector<Segment> labelSegments_;
std::vector<Segment> outputSegments_;
std::set<int> excludedChunkTypes_;
mutable std::unordered_map<std::string, real> values_;
public:
virtual void init(const EvaluatorConfig& config) {
......@@ -121,11 +123,9 @@ public:
}
virtual void printStats(std::ostream& os) const {
double precision = (double)numCorrect_ / numOutputSegments_;
double recall = (double)numCorrect_ / numLabelSegments_;
double f1 =
!numCorrect_ ? 0 : 2 * precision * recall / (precision + recall);
os << config_.name() << "=" << f1 << " true_chunks=" << numLabelSegments_
storeLocalValues();
os << config_.name() << "=" << values_["F1-score"]
<< " true_chunks=" << numLabelSegments_
<< " result_chunks=" << numOutputSegments_
<< " correct_chunks=" << numCorrect_;
}
......@@ -243,6 +243,46 @@ public:
if (tag == tagSingle_) return true;
return false;
}
// three metrics: precision, recall and F1-score
void getNames(std::vector<std::string>* names) {
storeLocalValues();
names->reserve(names->size() + values_.size());
for (auto it = values_.begin(); it != values_.end(); ++it) {
names->push_back(config_.name() + "." + it->first);
}
}
// get value by field name
real getValue(const std::string& name, Error* err) const {
storeLocalValues();
std::vector<std::string> buffers;
paddle::str::split(name, '.', &buffers);
auto it = values_.find(buffers.back());
if (it == values_.end()) { // not found
*err = Error("No such key %s", name.c_str());
return 0.0f;
}
return it->second;
}
// get type of evaluator
std::string getTypeImpl() const { return "chunk"; }
private:
void storeLocalValues() const {
CHECK_GE(numOutputSegments_, 0);
CHECK_GE(numLabelSegments_, 0);
double precision =
!numOutputSegments_ ? 0 : (double)numCorrect_ / numOutputSegments_;
double recall =
!numLabelSegments_ ? 0 : (double)numCorrect_ / numLabelSegments_;
values_["precision"] = precision;
values_["recall"] = recall;
values_["F1-score"] =
!numCorrect_ ? 0 : 2 * precision * recall / (precision + recall);
}
};
REGISTER_EVALUATOR(chunk, ChunkEvaluator);
......
......@@ -180,7 +180,6 @@ int getri<double>(const CBLAS_ORDER order,
const int lda,
const int* ipiv) {
return dynload::PADDLE_DGETRI(order, N, A, lda, ipiv);
return 0;
}
template <>
......
......@@ -103,7 +103,10 @@ inline void TensorGpuApply(LeftType& lhs, const RightType& rhs) {
}
#else
template <class T, typename LeftType, typename RightType>
inline void TensorGpuApply(LeftType& lhs, RightType& rhs) {}
inline void TensorGpuApply(LeftType& lhs, RightType& rhs) {
LOG(FATAL) << "Since it is gcc compiled, "
"this calculation does not support GPU implementation.";
}
#endif
} // namespace paddle
......@@ -161,6 +161,7 @@ void AdaDeltaParameterOptimizer::update(const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) const {
CHECK(sparseId == -1LU) << "Sparse update is not supported";
BaseMatrix& value = *vecs[PARAMETER_VALUE];
BaseMatrix& grad = *vecs[PARAMETER_GRADIENT];
BaseMatrix& mom = *vecs[PARAMETER_MOMENTUM];
......@@ -265,6 +266,7 @@ void AdamParameterOptimizer::update(const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) const {
CHECK(sparseId == -1UL) << "Sparse update is not supported";
real beta1_power = std::pow(beta1_, step_);
real beta2_power = std::pow(beta2_, step_);
real learningRate = config.learning_rate() * learningRate_;
......@@ -303,18 +305,25 @@ void AdamaxParameterOptimizer::update(const VectorPtr vecs[],
void OptimizerWithGradientClipping::update(const VectorPtr vecs[],
const ParameterConfig& config,
size_t sparseId) const {
real globalThreshold = optConfig_.gradient_clipping_threshold();
real localThreshold = config.gradient_clipping_threshold();
// Use local gradient clipping threshold if it's enabled,
// otherwise using the global one.
real threshold = localThreshold > 0.0f ? localThreshold : globalThreshold;
std::string field = localThreshold > 0.0f ? "local" : "global";
real maxAbsGrad = vecs[PARAMETER_GRADIENT]->getAbsMax();
if (maxAbsGrad > config.gradient_clipping_threshold()) {
if (maxAbsGrad > threshold) {
if (FLAGS_log_clipping) {
real avgAbsGrad = vecs[PARAMETER_GRADIENT]->getAbsSum() /
vecs[PARAMETER_GRADIENT]->getSize();
LOG(INFO) << "parameter=" << config.name() << " need clipping,"
<< " max grad=" << maxAbsGrad << " avg grad=" << avgAbsGrad;
LOG(INFO) << "parameter=" << config.name() << " need clipping by "
<< field << " threshold=" << threshold
<< ", max grad=" << maxAbsGrad << ", avg grad=" << avgAbsGrad;
}
vecs[PARAMETER_GRADIENT]->clip(-config.gradient_clipping_threshold(),
config.gradient_clipping_threshold());
vecs[PARAMETER_GRADIENT]->clip(-threshold, threshold);
}
optimizer_->update(vecs, config, sparseId);
}
......
......@@ -131,7 +131,8 @@ ParameterOptimizer* OptimizerWithRegularizer::create(
bool inPserver) {
ParameterOptimizer* optimizer =
ParameterOptimizer::create(optConfig, inPserver);
if (paraConfig.gradient_clipping_threshold() > 0.0f &&
if ((optConfig.gradient_clipping_threshold() > 0.0f ||
paraConfig.gradient_clipping_threshold() > 0.0f) &&
!dynamic_cast<AddOptimizer*>(optimizer)) {
optimizer = new OptimizerWithGradientClipping(optConfig, optimizer);
}
......
......@@ -167,6 +167,7 @@ public:
}
parameterTypes_.push_back(type);
}
real getLearningRate() const { return learningRate_; }
virtual void setNoDecay() { applyDecay_ = false; }
......@@ -201,6 +202,7 @@ protected:
* so, if lr change in StartBatch, please assign to learningRate_
*/
real learningRate_;
std::unique_ptr<LearningRateScheduler> learningRateScheduler_;
int64_t pass_; // current training pass (starting from 0)
bool firstTime_;
......
#!/bin/bash
set -xe
mkdir -p /paddle/build
cd /paddle/build
rm -f /paddle/install 2>/dev/null || true
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \
-DHOST_CXX_COMPILER=/usr/bin/g++ \
-DCMAKE_INSTALL_PREFIX=/paddle/install \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DCMAKE_C_FLAGS_RELWITHDEBINFO="-O3" \
-DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O3" \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
make -j `nproc`
make install
export PATH=/paddle/install/bin:/paddle/install/opt/paddle/bin:$PATH
paddle version
......@@ -128,6 +128,9 @@ message OptimizationConfig {
// when async_lagged_grad_discard_ratio * num_gradient_servers commit passed,
// current async gradient will be discard silently.
optional double async_lagged_grad_discard_ratio = 37 [default = 1.5];
// global threshold for gradient clipping
optional double gradient_clipping_threshold = 38 [default = 0.0];
};
message TrainerConfig {
......
......@@ -3377,6 +3377,7 @@ settings = dict(
algorithm='async_sgd',
async_lagged_grad_discard_ratio=1.5,
learning_method='momentum',
gradient_clipping_threshold=None,
num_batches_per_send_parameter=None,
num_batches_per_get_parameter=None,
center_parameter_update_method=None,
......
......@@ -17,7 +17,7 @@ __all__ = [
"IdentityActivation", "LinearActivation", 'SequenceSoftmaxActivation',
'ExpActivation', "ReluActivation", "BReluActivation", "SoftReluActivation",
"STanhActivation", "AbsActivation", "SquareActivation", "BaseActivation",
"LogActivation"
"LogActivation", "SqrtActivation", "ReciprocalActivation"
]
......@@ -224,3 +224,27 @@ class LogActivation(BaseActivation):
def __init__(self):
BaseActivation.__init__(self, 'log', False)
class SqrtActivation(BaseActivation):
"""
Square Root Activation.
.. math::
f(z) = sqrt(z)
"""
def __init__(self):
BaseActivation.__init__(self, 'sqrt', False)
class ReciprocalActivation(BaseActivation):
"""
Reciprocal Activation.
.. math::
f(z) = 1/z
"""
def __init__(self):
BaseActivation.__init__(self, 'reciprocal', False)
......@@ -347,32 +347,71 @@ def chunk_evaluator(
excluded_chunk_types=None, ):
"""
Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence. It calculates the chunk detection F1 score.
sequence. It calculates precision, recall and F1 scores for the chunk detection.
A chunk is correctly detected if its beginning, end and type are correct.
Other chunk type is ignored.
To use chunk evaluator, several concepts need to be clarified firstly.
For each label in the label sequence, we have:
* **Chunk type** is the type of the whole chunk and a chunk consists of one or several words. (For example in NER, ORG for organization name, PER for person name etc.)
.. code-block:: python
* **Tag type** indicates the position of a word in a chunk. (B for begin, I for inside, E for end, S for single)
We can name a label by combining tag type and chunk type. (ie. B-ORG for begining of an organization name)
tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
The construction of label dictionary should obey the following rules:
The total number of different labels is numTagType*numChunkTypes+1.
We support 4 labelling scheme.
The tag type for each of the scheme is shown as follows:
- Use one of the listed labelling schemes. These schemes differ in ways indicating chunk boundry.
.. code-block:: python
.. code-block:: text
Scheme Description
plain Use the same label for the whole chunk.
IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
To make it clear, let's illustrate by an NER example.
Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
in which B-ORG for begining of ORG and I-ORG for inside of ORG.
Prefixes which are called 'tag type' here are added to chunk types and there are two tag types including B and I.
Of course, the training data should be labeled accordingly.
- Mapping is done correctly by the listed equations and assigning protocol.
The following table are equations to extract tag type and chunk type from a label.
.. code-block:: text
tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
The following table shows the mapping rule between tagType and tag type in each scheme.
.. code-block:: text
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Continue the NER example, and the label dict should look like this to satify above equations:
.. code-block:: text
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
'plain' means the whole chunk must contain exactly the same chunk label.
In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
"IOB" so tagType has two values: 0 for B and 1 for I.
Here we will use I-LOC to explain the above mapping rules in detail.
For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC
and the tag is I.
The simple usage is:
......@@ -380,6 +419,7 @@ def chunk_evaluator(
eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
:param input: The input layers.
:type input: LayerOutput
:param label: An input layer containing the ground truth label.
......
......@@ -40,6 +40,8 @@ register_unary_math_op('sigmoid', act.SigmoidActivation())
register_unary_math_op('tanh', act.TanhActivation())
register_unary_math_op('square', act.SquareActivation())
register_unary_math_op('relu', act.ReluActivation())
register_unary_math_op('sqrt', act.SqrtActivation())
register_unary_math_op('reciprocal', act.ReciprocalActivation())
def add(layeroutput, other):
......
......@@ -408,7 +408,8 @@ def settings(batch_size,
args = [
'batch_size', 'learning_rate', 'learning_rate_decay_a',
'learning_rate_decay_b', 'learning_rate_schedule', 'learning_rate_args'
'learning_rate_decay_b', 'learning_rate_schedule', 'learning_rate_args',
'gradient_clipping_threshold'
]
kwargs = dict()
kwargs['algorithm'] = algorithm
......
......@@ -4,6 +4,8 @@ settings(batch_size=1000, learning_rate=1e-5)
x = data_layer(name='data', size=100)
x = layer_math.exp(x)
x = layer_math.sqrt(x)
x = layer_math.reciprocal(x)
x = layer_math.log(x)
x = layer_math.abs(x)
x = layer_math.sigmoid(x)
......
......@@ -20,13 +20,43 @@ layers {
}
}
}
layers {
name: "__sqrt_0__"
type: "mixed"
size: 100
active_type: "sqrt"
inputs {
input_layer_name: "__exp_0__"
proj_conf {
type: "identity"
name: "___sqrt_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__reciprocal_0__"
type: "mixed"
size: 100
active_type: "reciprocal"
inputs {
input_layer_name: "__sqrt_0__"
proj_conf {
type: "identity"
name: "___reciprocal_0__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__log_0__"
type: "mixed"
size: 100
active_type: "log"
inputs {
input_layer_name: "__exp_0__"
input_layer_name: "__reciprocal_0__"
proj_conf {
type: "identity"
name: "___log_0__.w0"
......@@ -351,6 +381,8 @@ sub_models {
name: "root"
layer_names: "data"
layer_names: "__exp_0__"
layer_names: "__sqrt_0__"
layer_names: "__reciprocal_0__"
layer_names: "__log_0__"
layer_names: "__abs_0__"
layer_names: "__sigmoid_0__"
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MQ2007 dataset
MQ2007 is a query set from Million Query track of TREC 2007. There are about 1700 queries in it with labeled documents. In MQ2007, the 5-fold cross
validation strategy is adopted and the 5-fold partitions are included in the package. In each fold, there are three subsets for learning: training set,
validation set and testing set.
MQ2007 dataset from website
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar and parse training set and test set into paddle reader creators
"""
import os
import random
import functools
import rarfile
from common import download
import numpy as np
# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
URL = "http://www.bigdatalab.ac.cn/benchmark/upload/download_source/7b6dbbe2-842c-11e4-a536-bcaec51b9163_MQ2007.rar"
MD5 = "7be1640ae95c6408dab0ae7207bdc706"
def __initialize_meta_info__():
"""
download and extract the MQ2007 dataset
"""
fn = fetch()
rar = rarfile.RarFile(fn)
dirpath = os.path.dirname(fn)
rar.extractall(path=dirpath)
return dirpath
class Query(object):
"""
queries used for learning to rank algorithms. It is created from relevance scores, query-document feature vectors
Parameters:
----------
query_id : int
query_id in dataset, mapping from query to relevance documents
relevance_score : int
relevance score of query and document pair
feature_vector : array, dense feature
feature in vector format
description : string
comment section in query doc pair data
"""
def __init__(self,
query_id=-1,
relevance_score=-1,
feature_vector=None,
description=""):
self.query_id = query_id
self.relevance_score = relevance_score
if feature_vector is None:
self.feature_vector = []
else:
self.feature_vector = feature_vector
self.description = description
def __str__(self):
string = "%s %s %s" % (str(self.relevance_score), str(self.query_id),
" ".join(str(f) for f in self.feature_vector))
return string
# @classmethod
def _parse_(self, text):
"""
parse line into Query
"""
comment_position = text.find('#')
line = text[:comment_position].strip()
self.description = text[comment_position + 1:].strip()
parts = line.split()
if len(parts) != 48:
sys.stdout.write("expect 48 space split parts, get %d" %
(len(parts)))
return None
# format : 0 qid:10 1:0.000272 2:0.000000 ....
self.relevance_score = int(parts[0])
self.query_id = int(parts[1].split(':')[1])
for p in parts[2:]:
pair = p.split(':')
self.feature_vector.append(float(pair[1]))
return self
class QueryList(object):
"""
group query into list, every item in list is a Query
"""
def __init__(self, querylist=None):
self.query_id = -1
if querylist is None:
self.querylist = []
else:
self.querylist = querylist
for query in self.querylist:
if self.query_id == -1:
self.query_id = query.query_id
else:
if self.query_id != query.query_id:
raise ValueError("query in list must be same query_id")
def __iter__(self):
for query in self.querylist:
yield query
def __len__(self):
return len(self.querylist)
def __getitem__(self, i):
return self.querylist[i]
def _correct_ranking_(self):
if self.querylist is None:
return
self.querylist.sort(key=lambda x: x.relevance_score, reverse=True)
def _add_query(self, query):
if self.query_id == -1:
self.query_id = query.query_id
else:
if self.query_id != query.query_id:
raise ValueError("query in list must be same query_id")
self.querylist.append(query)
def gen_plain_txt(querylist):
"""
gen plain text in list for other usage
Paramters:
--------
querylist : querylist, one query match many docment pairs in list, see QueryList
return :
------
query_id : np.array, shape=(samples_num, )
label : np.array, shape=(samples_num, )
querylist : np.array, shape=(samples_num, feature_dimension)
"""
if not isinstance(querylist, QueryList):
querylist = QueryList(querylist)
querylist._correct_ranking_()
for query in querylist:
yield querylist.query_id, query.relevance_score, np.array(
query.feature_vector)
def gen_point(querylist):
"""
gen item in list for point-wise learning to rank algorithm
Paramters:
--------
querylist : querylist, one query match many docment pairs in list, see QueryList
return :
------
label : np.array, shape=(samples_num, )
querylist : np.array, shape=(samples_num, feature_dimension)
"""
if not isinstance(querylist, QueryList):
querylist = QueryList(querylist)
querylist._correct_ranking_()
for query in querylist:
yield query.relevance_score, np.array(query.feature_vector)
def gen_pair(querylist, partial_order="full"):
"""
gen pair for pair-wise learning to rank algorithm
Paramters:
--------
querylist : querylist, one query match many docment pairs in list, see QueryList
pairtial_order : "full" or "neighbour"
there is redudant in all possiable pair combinations, which can be simplifed
gen pairs for neighbour items or the full partial order pairs
return :
------
label : np.array, shape=(1)
query_left : np.array, shape=(1, feature_dimension)
query_right : same as left
"""
if not isinstance(querylist, QueryList):
querylist = QueryList(querylist)
querylist._correct_ranking_()
labels = []
docpairs = []
# C(n,2)
for i in range(len(querylist)):
query_left = querylist[i]
for j in range(i + 1, len(querylist)):
query_right = querylist[j]
if query_left.relevance_score > query_right.relevance_score:
labels.append(1)
docpairs.append([
np.array(query_left.feature_vector),
np.array(query_right.feature_vector)
])
elif query_left.relevance_score < query_right.relevance_score:
labels.append(1)
docpairs.append([
np.array(query_right.feature_vector),
np.array(query_left.feature_vector)
])
for label, pair in zip(labels, docpairs):
yield label, pair[0], pair[1]
def gen_list(querylist):
"""
gen item in list for list-wise learning to rank algorithm
Paramters:
--------
querylist : querylist, one query match many docment pairs in list, see QueryList
return :
------
label : np.array, shape=(samples_num, )
querylist : np.array, shape=(samples_num, feature_dimension)
"""
if not isinstance(querylist, QueryList):
querylist = QueryList(querylist)
querylist._correct_ranking_()
relevance_score_list = [query.relevance_score for query in querylist]
feature_vector_list = [query.feature_vector for query in querylist]
yield np.array(relevance_score_list).T, np.array(feature_vector_list)
def query_filter(querylists):
"""
filter query get only document with label 0.
label 0, 1, 2 means the relevance score document with query
parameters :
querylist : QueyList list
return :
querylist : QueyList list
"""
filter_query = []
for querylist in querylists:
relevance_score_list = [query.relevance_score for query in querylist]
if sum(relevance_score_list) != .0:
filter_query.append(querylist)
return filter_query
def load_from_text(filepath, shuffle=True, fill_missing=-1):
"""
parse data file into querys
"""
prev_query_id = -1
querylists = []
querylist = None
fn = __initialize_meta_info__()
with open(os.path.join(fn, filepath)) as f:
for line in f:
query = Query()
query = query._parse_(line)
if query == None:
continue
if query.query_id != prev_query_id:
if querylist is not None:
querylists.append(querylist)
querylist = QueryList()
prev_query_id = query.query_id
querylist._add_query(query)
if querylist is not None:
querylists.append(querylist)
if shuffle == True:
random.shuffle(querylists)
return querylists
def __reader__(filepath, format="pairwise", shuffle=True, fill_missing=-1):
"""
Parameters
--------
filename : string
shuffle : shuffle query-doc pair under the same query
fill_missing : fill the missing value. default in MQ2007 is -1
Returns
------
yield
label query_left, query_right # format = "pairwise"
label querylist # format = "listwise"
"""
querylists = query_filter(
load_from_text(
filepath, shuffle=shuffle, fill_missing=fill_missing))
for querylist in querylists:
if format == "plain_txt":
yield next(gen_plain_txt(querylist))
elif format == "pointwise":
yield next(gen_point(querylist))
elif format == "pairwise":
for pair in gen_pair(querylist):
yield pair
elif format == "listwise":
yield next(gen_list(querylist))
train = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/train.txt")
test = functools.partial(__reader__, filepath="MQ2007/MQ2007/Fold1/test.txt")
def fetch():
return download(URL, "MQ2007", MD5)
if __name__ == "__main__":
fetch()
mytest = functools.partial(
__reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise")
for label, query in mytest():
print label, query
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.dataset.mq2007
import unittest
class TestMQ2007(unittest.TestCase):
def test_pairwise(self):
for label, query_left, query_right in paddle.v2.dataset.mq2007.test(
format="pairwise"):
self.assertEqual(query_left.shape(), (46, ))
self.assertEqual(query_right.shape(), (46, ))
def test_listwise(self):
for label_array, query_array in paddle.v2.dataset.mq2007.test(
format="listwise"):
self.assertEqual(len(label_array), len(query_array))
if __name__ == "__main__":
unittest.main()
......@@ -177,7 +177,7 @@ class SGD(object):
Testing method. Will test input data.
:param reader: A reader that reads and yeilds data items.
:type reader: collections.Iterable
:type reader: collections.Iterable
:param feeding: Feeding is a map of neural network input name and array
index that reader returns.
:type feeding: dict
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册