Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
635099c1
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
635099c1
编写于
6月 07, 2018
作者:
W
Wu Yi
提交者:
GitHub
6月 07, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11121 from typhoonzero/fluid_benchmark_support_recordioreader
Fluid benchmark support recordio reader
上级
f7c96f07
cd330578
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
354 addition
and
55 deletion
+354
-55
benchmark/fluid/Dockerfile
benchmark/fluid/Dockerfile
+1
-1
benchmark/fluid/README.md
benchmark/fluid/README.md
+10
-0
benchmark/fluid/fluid_benchmark.py
benchmark/fluid/fluid_benchmark.py
+87
-28
benchmark/fluid/models/machine_translation.py
benchmark/fluid/models/machine_translation.py
+3
-1
benchmark/fluid/models/mnist.py
benchmark/fluid/models/mnist.py
+20
-4
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+44
-15
benchmark/fluid/models/stacked_dynamic_lstm.py
benchmark/fluid/models/stacked_dynamic_lstm.py
+4
-1
benchmark/fluid/models/vgg.py
benchmark/fluid/models/vgg.py
+20
-4
benchmark/fluid/recordio_converter.py
benchmark/fluid/recordio_converter.py
+164
-0
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+1
-1
未找到文件。
benchmark/fluid/Dockerfile
浏览文件 @
635099c1
...
...
@@ -19,4 +19,4 @@ ADD *.whl /
RUN
pip
install
/
*
.whl
&&
rm
-f
/
*
.whl
&&
chmod
+x /usr/bin/paddle_k8s
ENV
LD_LIBRARY_PATH=/usr/local/lib
ADD
fluid_benchmark.py
dataset
.py models/ /workspace/
ADD
fluid_benchmark.py
recordio_converter
.py models/ /workspace/
benchmark/fluid/README.md
浏览文件 @
635099c1
...
...
@@ -44,6 +44,16 @@ Currently supported `--model` argument include:
PADDLE_PSERVER_PORT
=
7164
PADDLE_TRAINER_IPS
=
192.168.0.2,192.168.0.3
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
mnist
--device
GPU
--update_method
nccl2
```
## Prepare the RecordIO file to Achieve Better Performance
Run the following command will generate RecordIO files like "mnist.recordio" under the path
and batch_size you choose, you can use batch_size=1 so that later reader can change the batch_size
at any time using
`fluid.batch`
.
```
bash
python
-c
'from recordio_converter import *; prepare_mnist("data", 1)'
```
## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
...
...
benchmark/fluid/fluid_benchmark.py
浏览文件 @
635099c1
...
...
@@ -38,10 +38,12 @@ def parse_args():
default
=
'resnet'
,
help
=
'The model to run benchmark with.'
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
32
,
help
=
'The minibatch size.'
)
'--batch_size'
,
type
=
int
,
default
=
32
,
help
=
'The batch size on each gpu.'
)
parser
.
add_argument
(
'--learning_rate'
,
type
=
float
,
default
=
0.001
,
help
=
'The learning rate.'
)
# TODO(wuyi): add "--use_fake_data" option back.
parser
.
add_argument
(
'--skip_batch_num'
,
type
=
int
,
...
...
@@ -49,7 +51,10 @@ def parse_args():
help
=
'The first num of minibatch num to skip, for better performance test'
)
parser
.
add_argument
(
'--iterations'
,
type
=
int
,
default
=
80
,
help
=
'The number of minibatches.'
)
'--iterations'
,
type
=
int
,
default
=
80
,
help
=
'The number of minibatches, set to -1 to run all batches.'
)
parser
.
add_argument
(
'--pass_num'
,
type
=
int
,
default
=
100
,
help
=
'The number of passes.'
)
parser
.
add_argument
(
...
...
@@ -69,6 +74,7 @@ def parse_args():
type
=
int
,
default
=
1
,
help
=
'If gpus > 1, will use ParallelExecutor to run, else use Executor.'
)
# this option is available only for vgg and resnet.
parser
.
add_argument
(
'--cpus'
,
type
=
int
,
...
...
@@ -78,7 +84,7 @@ def parse_args():
'--data_set'
,
type
=
str
,
default
=
'flowers'
,
choices
=
[
'cifar10'
,
'flowers'
],
choices
=
[
'cifar10'
,
'flowers'
,
'imagenet'
],
help
=
'Optional dataset for benchmark.'
)
parser
.
add_argument
(
'--infer_only'
,
action
=
'store_true'
,
help
=
'If set, run forward only.'
)
...
...
@@ -108,6 +114,16 @@ def parse_args():
default
=
'local'
,
choices
=
[
'local'
,
'pserver'
,
'nccl2'
],
help
=
'Choose parameter update method, can be local, pserver, nccl2.'
)
parser
.
add_argument
(
'--use_reader_op'
,
action
=
'store_true'
,
help
=
'Whether to use reader op, and must specify the data path if set this to true.'
)
parser
.
add_argument
(
'--data_path'
,
type
=
str
,
default
=
""
,
help
=
'Directory that contains all the training recordio files.'
)
args
=
parser
.
parse_args
()
return
args
...
...
@@ -210,26 +226,50 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
if
not
args
.
use_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
train_losses
=
[]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
not
args
.
use_reader_op
:
reader_generator
=
train_reader
()
batch_id
=
0
data
=
None
while
True
:
if
not
args
.
use_reader_op
:
data
=
next
(
reader_generator
,
None
)
if
data
==
None
:
break
if
iters
==
args
.
iterations
:
break
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
iters
==
args
.
iterations
:
break
loss
=
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
])
if
args
.
use_reader_op
:
try
:
loss
=
exe
.
run
(
train_prog
,
fetch_list
=
[
avg_loss
])
except
fluid
.
core
.
EnforceNotMet
as
ex
:
break
else
:
loss
=
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
])
iters
+=
1
num_samples
+=
len
(
data
)
batch_id
+=
1
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if
args
.
use_reader_op
:
num_samples
+=
args
.
batch_size
*
args
.
gpus
else
:
num_samples
+=
len
(
data
)
train_losses
.
append
(
loss
)
print
(
"Pass: %d, Iter: %d, Loss: %f
\n
"
%
(
pass_id
,
iters
,
np
.
mean
(
train_losses
)))
...
...
@@ -250,10 +290,14 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
def
train_parallel
(
avg_loss
,
infer_prog
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
,
args
,
train_prog
,
startup_prog
,
nccl_id_var
,
num_trainers
,
trainer_id
):
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
if
not
args
.
use_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
# generate fake:
if
args
.
use_fake_data
:
for
var
in
feed_var_list
:
...
...
@@ -270,7 +314,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
"value"
:
1.0
,
"dtype"
:
var
.
dtype
})
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
if
nccl_id_var
and
trainer_id
==
0
:
#FIXME(wuyi): wait other trainer to start listening
time
.
sleep
(
30
)
...
...
@@ -287,12 +330,21 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_trainers
=
num_trainers
,
trainer_id
=
trainer_id
)
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
for
pass_id
in
range
(
args
.
pass_num
):
num_samples
=
0
iters
=
0
start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
not
args
.
use_reader_op
:
reader_generator
=
train_reader
()
batch_id
=
0
data
=
None
while
True
:
if
not
args
.
use_reader_op
:
data
=
next
(
reader_generator
,
None
)
if
data
==
None
:
break
if
iters
==
args
.
iterations
:
break
if
args
.
profile
and
pass_id
==
0
and
batch_id
==
5
:
profiler
.
start_profiler
(
"All"
)
elif
args
.
profile
and
pass_id
==
0
and
batch_id
==
10
:
...
...
@@ -301,19 +353,26 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
iters
==
args
.
iterations
:
break
if
args
.
use_fake_data
:
loss
,
=
exe
.
run
([
avg_loss
.
name
])
if
args
.
use_fake_data
or
args
.
use_reader_op
:
try
:
loss
,
=
exe
.
run
([
avg_loss
.
name
])
except
fluid
.
core
.
EnforceNotMet
as
ex
:
break
else
:
loss
,
=
exe
.
run
([
avg_loss
.
name
],
feed
=
feeder
.
feed
(
data
))
if
args
.
update_method
==
"pserver"
:
exe
.
bcast_params
()
num_samples
+=
len
(
data
)
if
args
.
use_reader_op
:
num_samples
+=
args
.
batch_size
*
args
.
gpus
else
:
num_samples
+=
len
(
data
)
iters
+=
1
if
batch_id
%
1
==
0
:
print
(
"Pass %d, batch %d, loss %s"
%
(
pass_id
,
batch_id
,
np
.
array
(
loss
)))
batch_id
+=
1
if
args
.
use_reader_op
:
num_samples
=
num_samples
*
args
.
gpus
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
if
not
args
.
no_test
and
batch_acc
:
test_acc
=
test
(
startup_exe
,
infer_prog
,
test_reader
,
feeder
,
...
...
benchmark/fluid/models/machine_translation.py
浏览文件 @
635099c1
...
...
@@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor):
def
get_model
(
args
):
if
args
.
use_reader_op
:
raise
Exception
(
"machine_translation do not support reader op for now."
)
embedding_dim
=
512
encoder_size
=
512
decoder_size
=
512
...
...
@@ -221,7 +223,7 @@ def get_model(args):
train_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
benchmark/fluid/models/mnist.py
浏览文件 @
635099c1
...
...
@@ -20,6 +20,7 @@ import numpy as np
import
argparse
import
time
import
cProfile
import
os
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -65,9 +66,24 @@ def cnn_model(data):
def
get_model
(
args
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
,
1
,
28
,
28
],
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
,
pass_num
=
args
.
pass_num
)
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
device
==
'CPU'
and
args
.
cpus
>
1
:
places
=
fluid
.
layers
.
get_places
(
args
.
cpus
)
...
...
@@ -103,7 +119,7 @@ def get_model(args):
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
benchmark/fluid/models/resnet.py
浏览文件 @
635099c1
...
...
@@ -19,6 +19,7 @@ from __future__ import print_function
import
functools
import
numpy
as
np
import
time
import
os
import
cProfile
,
pstats
,
StringIO
...
...
@@ -26,6 +27,7 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.profiler
as
profiler
from
recordio_converter
import
imagenet_train
,
imagenet_test
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'relu'
):
...
...
@@ -122,16 +124,48 @@ def get_model(args):
else
:
dshape
=
[
32
,
32
,
3
]
model
=
resnet_cifar10
else
:
train_reader
=
paddle
.
dataset
.
cifar
.
train10
()
test_reader
=
paddle
.
dataset
.
cifar
.
test10
()
elif
args
.
data_set
==
"flowers"
:
class_dim
=
102
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
input
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
train_reader
=
paddle
.
dataset
.
flowers
.
train
()
test_reader
=
paddle
.
dataset
.
flowers
.
test
()
elif
args
.
data_set
==
"imagenet"
:
class_dim
=
1000
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
not
args
.
data_path
:
raise
Exception
(
"Must specify --data_path when training with imagenet"
)
train_reader
=
imagenet_train
(
args
.
data_path
)
test_reader
=
imagenet_test
(
args
.
data_path
)
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
]
+
dshape
,
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
,
pass_num
=
args
.
pass_num
)
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
input
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
input
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
device
==
'CPU'
and
args
.
cpus
>
1
:
places
=
fluid
.
layers
.
get_places
(
args
.
cpus
)
...
...
@@ -162,15 +196,10 @@ def get_model(args):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
momentum
=
0.9
)
train_reader
=
paddle
.
batch
(
batched_
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
train
(),
buf_size
=
5120
),
batch_size
=
args
.
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
test
(),
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
train_reader
,
buf_size
=
5120
),
batch_size
=
args
.
batch_size
*
args
.
gpus
)
batched_test_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
batched_test_reader
,
batch_acc
benchmark/fluid/models/stacked_dynamic_lstm.py
浏览文件 @
635099c1
...
...
@@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size):
def
get_model
(
args
):
if
args
.
use_reader_op
:
raise
Exception
(
"stacked_dynamic_lstm do not support reader op for now."
)
lstm_size
=
512
emb_dim
=
512
crop_size
=
1500
...
...
@@ -114,7 +117,7 @@ def get_model(args):
train_reader
=
batch
(
paddle
.
reader
.
shuffle
(
crop_sentence
(
imdb
.
train
(
word_dict
),
crop_size
),
buf_size
=
25000
),
batch_size
=
args
.
batch_size
)
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
batch
(
paddle
.
reader
.
shuffle
(
crop_sentence
(
imdb
.
test
(
word_dict
),
crop_size
),
buf_size
=
25000
),
...
...
benchmark/fluid/models/vgg.py
浏览文件 @
635099c1
...
...
@@ -22,6 +22,7 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
import
argparse
import
functools
import
os
def
vgg16_bn_drop
(
input
):
...
...
@@ -65,9 +66,24 @@ def get_model(args):
else
:
data_shape
=
[
224
,
224
,
3
]
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
]
+
data_shape
,
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
,
pass_num
=
args
.
pass_num
)
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
net
=
vgg16_bn_drop
(
images
)
...
...
@@ -95,7 +111,7 @@ def get_model(args):
paddle
.
dataset
.
cifar
.
train10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
train
(),
buf_size
=
5120
),
batch_size
=
args
.
batch_size
)
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
test
(),
...
...
benchmark/fluid/recordio_converter.py
0 → 100644
浏览文件 @
635099c1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
random
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.dataset
import
mnist
,
cifar
,
flowers
,
image
def
convert_2_recordio
(
py_reader
,
outfilepath
,
batch_size
,
shape_data
,
shape_label
):
num_batches
=
0
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
reader
=
paddle
.
batch
(
py_reader
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
# order is image and label
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
shape_data
),
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
shape_label
,
dtype
=
'int64'
),
],
place
=
fluid
.
CPUPlace
())
num_batches
=
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
outfilepath
,
reader
,
feeder
)
return
num_batches
def
prepare_mnist
(
outpath
,
batch_size
):
outfilepath
=
os
.
path
.
join
(
outpath
,
"mnist.recordio"
)
convert_2_recordio
(
mnist
.
train
,
outfilepath
,
batch_size
,
[
784
],
[
1
])
def
prepare_cifar10
(
outpath
,
batch_size
):
outfilepath
=
os
.
path
.
join
(
outpath
,
"cifar.recordio"
)
convert_2_recordio
(
cifar
.
train10
,
outfilepath
,
batch_size
,
[
3
,
32
,
32
],
[
1
])
def
prepare_flowers
(
outpath
,
batch_size
):
outfilepath
=
os
.
path
.
join
(
outpath
,
"flowers.recordio"
)
convert_2_recordio
(
flowers
.
train
,
outfilepath
,
batch_size
,
[
3
,
224
,
224
],
[
1
])
def
default_mapper
(
sample
):
img
,
label
=
sample
img
=
image
.
simple_transform
(
img
,
256
,
224
,
True
,
mean
=
[
103.94
,
116.78
,
123.68
])
return
img
.
flatten
().
astype
(
'float32'
),
label
def
imagenet_train
(
data_dir
):
contents
=
os
.
listdir
(
data_dir
)
if
set
(
contents
)
!=
set
(
[
"train"
,
"train.txt"
,
"val"
,
"val_set"
,
"val.txt"
,
"unzip.sh"
]):
raise
Exception
(
"Imagenet data contents error!"
)
img2label
=
dict
()
imgfilelist
=
[]
with
open
(
os
.
path
.
join
(
data_dir
,
"train.txt"
))
as
fn
:
while
1
:
l
=
fn
.
readline
()
if
not
l
:
break
img
,
lbl
=
l
[:
-
1
].
split
(
" "
)
img2label
[
img
]
=
int
(
lbl
)
imgfilelist
.
append
(
img
)
# shuffle all, this is slow
random
.
shuffle
(
imgfilelist
)
def
train_reader
():
for
idx
,
imgfile
in
enumerate
(
imgfilelist
):
data
=
image
.
load_image
(
os
.
path
.
join
(
data_dir
,
"train"
,
imgfile
.
lower
()))
label
=
[
img2label
[
imgfile
],
]
yield
[
data
,
label
]
return
paddle
.
reader
.
map_readers
(
default_mapper
,
train_reader
)
def
imagenet_test
(
data_dir
):
contents
=
os
.
listdir
(
data_dir
)
if
set
(
contents
)
!=
set
(
[
"train"
,
"train.txt"
,
"val"
,
"val_set"
,
"val.txt"
,
"unzip.sh"
]):
raise
Exception
(
"Imagenet data contents error!"
)
img2label
=
dict
()
imgfilelist
=
[]
with
open
(
os
.
path
.
join
(
data_dir
,
"val.txt"
))
as
fn
:
while
1
:
l
=
fn
.
readline
()
if
not
l
:
break
img
,
lbl
=
l
[:
-
1
].
split
(
" "
)
img2label
[
img
]
=
int
(
lbl
)
imgfilelist
.
append
(
img
)
def
test_reader
():
for
idx
,
imgfile
in
enumerate
(
imgfilelist
):
base_path
=
os
.
path
.
join
(
data_dir
,
"val"
,
imgfile
.
split
(
"."
)[
0
])
image_path
=
"."
.
join
([
base_path
,
"jpeg"
])
data
=
image
.
load_image
(
image_path
)
label
=
[
img2label
[
imgfile
],
]
yield
[
data
,
label
]
return
paddle
.
reader
.
map_readers
(
default_mapper
,
test_reader
)
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
def
convert_reader_to_recordio_files
(
filename
,
batch_per_file
,
reader_creator
,
feeder
,
compressor
=
core
.
RecordIOWriter
.
Compressor
.
Snappy
,
max_num_records
=
1000
,
feed_order
=
None
):
if
feed_order
is
None
:
feed_order
=
feeder
.
feed_names
f_name
,
f_ext
=
os
.
path
.
splitext
(
filename
)
assert
(
f_ext
==
".recordio"
)
lines
=
[]
f_idx
=
0
counter
=
0
for
idx
,
batch
in
enumerate
(
reader_creator
()):
lines
.
append
(
batch
)
if
idx
>=
batch_per_file
and
idx
%
batch_per_file
==
0
:
filename
=
"%s-%05d%s"
%
(
f_name
,
f_idx
,
f_ext
)
with
fluid
.
recordio_writer
.
create_recordio_writer
(
filename
,
compressor
,
max_num_records
)
as
writer
:
for
l
in
lines
:
res
=
feeder
.
feed
(
l
)
for
each
in
feed_order
:
writer
.
append_tensor
(
res
[
each
])
writer
.
complete_append_tensor
()
counter
+=
1
lines
=
[]
f_idx
+=
1
print
(
"written file: "
,
filename
)
return
counter
def
prepare_imagenet
(
inpath
,
outpath
,
batch_size
):
r
=
paddle
.
batch
(
imagenet_train
(
inpath
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
fluid
.
layers
.
data
(
name
=
"image"
,
shape
=
[
3
,
224
,
224
]),
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
'int64'
)
],
place
=
fluid
.
CPUPlace
())
outpath
=
os
.
path
.
join
(
outpath
,
"imagenet.recordio"
)
convert_reader_to_recordio_files
(
outpath
,
10000
,
r
,
feeder
)
python/paddle/fluid/layers/io.py
浏览文件 @
635099c1
...
...
@@ -434,7 +434,7 @@ def open_files(filenames,
shapes
,
lod_levels
,
dtypes
,
thread_num
,
thread_num
=
1
,
buffer_size
=
None
,
pass_num
=
1
,
for_parallel
=
True
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录