未验证 提交 635099c1 编写于 作者: W Wu Yi 提交者: GitHub

Merge pull request #11121 from typhoonzero/fluid_benchmark_support_recordioreader

Fluid benchmark support recordio reader
......@@ -19,4 +19,4 @@ ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py dataset.py models/ /workspace/
ADD fluid_benchmark.py recordio_converter.py models/ /workspace/
......@@ -44,6 +44,16 @@ Currently supported `--model` argument include:
PADDLE_PSERVER_PORT=7164 PADDLE_TRAINER_IPS=192.168.0.2,192.168.0.3 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method nccl2
```
## Prepare the RecordIO file to Achieve Better Performance
Run the following command will generate RecordIO files like "mnist.recordio" under the path
and batch_size you choose, you can use batch_size=1 so that later reader can change the batch_size
at any time using `fluid.batch`.
```bash
python -c 'from recordio_converter import *; prepare_mnist("data", 1)'
```
## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
......
......@@ -38,10 +38,12 @@ def parse_args():
default='resnet',
help='The model to run benchmark with.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
'--batch_size',
type=int,
default=32,
help='The batch size on each gpu.')
parser.add_argument(
'--learning_rate', type=float, default=0.001, help='The learning rate.')
# TODO(wuyi): add "--use_fake_data" option back.
parser.add_argument(
'--skip_batch_num',
type=int,
......@@ -49,7 +51,10 @@ def parse_args():
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
'--iterations',
type=int,
default=80,
help='The number of minibatches, set to -1 to run all batches.')
parser.add_argument(
'--pass_num', type=int, default=100, help='The number of passes.')
parser.add_argument(
......@@ -69,6 +74,7 @@ def parse_args():
type=int,
default=1,
help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
# this option is available only for vgg and resnet.
parser.add_argument(
'--cpus',
type=int,
......@@ -78,7 +84,7 @@ def parse_args():
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
choices=['cifar10', 'flowers', 'imagenet'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
......@@ -108,6 +114,16 @@ def parse_args():
default='local',
choices=['local', 'pserver', 'nccl2'],
help='Choose parameter update method, can be local, pserver, nccl2.')
parser.add_argument(
'--use_reader_op',
action='store_true',
help='Whether to use reader op, and must specify the data path if set this to true.'
)
parser.add_argument(
'--data_path',
type=str,
default="",
help='Directory that contains all the training recordio files.')
args = parser.parse_args()
return args
......@@ -210,6 +226,8 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_prog)
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
......@@ -219,16 +237,38 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num):
train_losses = []
for batch_id, data in enumerate(train_reader()):
if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
break
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
if args.use_reader_op:
try:
loss = exe.run(train_prog, fetch_list=[avg_loss])
except fluid.core.EnforceNotMet as ex:
break
else:
loss = exe.run(train_prog,
feed=feeder.feed(data),
fetch_list=[avg_loss])
iters += 1
batch_id += 1
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data)
train_losses.append(loss)
print("Pass: %d, Iter: %d, Loss: %f\n" %
......@@ -250,10 +290,14 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_acc, args, train_prog, startup_prog, nccl_id_var,
num_trainers, trainer_id):
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
# generate fake:
if args.use_fake_data:
for var in feed_var_list:
......@@ -270,7 +314,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
"value": 1.0,
"dtype": var.dtype})
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
if nccl_id_var and trainer_id == 0:
#FIXME(wuyi): wait other trainer to start listening
time.sleep(30)
......@@ -287,12 +330,21 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_trainers=num_trainers,
trainer_id=trainer_id)
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in range(args.pass_num):
num_samples = 0
iters = 0
start_time = time.time()
for batch_id, data in enumerate(train_reader()):
if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
break
if args.profile and pass_id == 0 and batch_id == 5:
profiler.start_profiler("All")
elif args.profile and pass_id == 0 and batch_id == 10:
......@@ -301,19 +353,26 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
if args.use_fake_data:
if args.use_fake_data or args.use_reader_op:
try:
loss, = exe.run([avg_loss.name])
except fluid.core.EnforceNotMet as ex:
break
else:
loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
if args.update_method == "pserver":
exe.bcast_params()
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data)
iters += 1
if batch_id % 1 == 0:
print("Pass %d, batch %d, loss %s" %
(pass_id, batch_id, np.array(loss)))
batch_id += 1
if args.use_reader_op:
num_samples = num_samples * args.gpus
print_train_time(start_time, time.time(), num_samples)
if not args.no_test and batch_acc:
test_acc = test(startup_exe, infer_prog, test_reader, feeder,
......
......@@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor):
def get_model(args):
if args.use_reader_op:
raise Exception("machine_translation do not support reader op for now.")
embedding_dim = 512
encoder_size = 512
decoder_size = 512
......@@ -221,7 +223,7 @@ def get_model(args):
train_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(
......
......@@ -20,6 +20,7 @@ import numpy as np
import argparse
import time
import cProfile
import os
import paddle
import paddle.fluid as fluid
......@@ -65,7 +66,22 @@ def cnn_model(data):
def get_model(args):
# Input data
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1, 1, 28, 28], (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
......@@ -103,7 +119,7 @@ def get_model(args):
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size)
paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size)
return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc
......@@ -19,6 +19,7 @@ from __future__ import print_function
import functools
import numpy as np
import time
import os
import cProfile, pstats, StringIO
......@@ -26,6 +27,7 @@ import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
from recordio_converter import imagenet_train, imagenet_test
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
......@@ -122,14 +124,46 @@ def get_model(args):
else:
dshape = [32, 32, 3]
model = resnet_cifar10
else:
train_reader = paddle.dataset.cifar.train10()
test_reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
train_reader = paddle.dataset.flowers.train()
test_reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
train_reader = imagenet_train(args.data_path)
test_reader = imagenet_test(args.data_path)
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + dshape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
input, label = fluid.layers.read_file(data_file)
else:
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
......@@ -162,15 +196,10 @@ def get_model(args):
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
train_reader = paddle.batch(
batched_train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, train_reader, test_reader, batch_acc
train_reader, buf_size=5120),
batch_size=args.batch_size * args.gpus)
batched_test_reader = paddle.batch(train_reader, batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, batched_train_reader, batched_test_reader, batch_acc
......@@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size):
def get_model(args):
if args.use_reader_op:
raise Exception(
"stacked_dynamic_lstm do not support reader op for now.")
lstm_size = 512
emb_dim = 512
crop_size = 1500
......@@ -114,7 +117,7 @@ def get_model(args):
train_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),
......
......@@ -22,6 +22,7 @@ import paddle.fluid as fluid
import paddle.fluid.core as core
import argparse
import functools
import os
def vgg16_bn_drop(input):
......@@ -65,8 +66,23 @@ def get_model(args):
else:
data_shape = [224, 224, 3]
# Input data
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + data_shape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
......@@ -95,7 +111,7 @@ def get_model(args):
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.dataset import mnist, cifar, flowers, image
def convert_2_recordio(py_reader, outfilepath, batch_size, shape_data,
shape_label):
num_batches = 0
with fluid.program_guard(fluid.Program(), fluid.Program()):
reader = paddle.batch(py_reader(), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=shape_data),
fluid.layers.data(
name='label', shape=shape_label, dtype='int64'),
],
place=fluid.CPUPlace())
num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
outfilepath, reader, feeder)
return num_batches
def prepare_mnist(outpath, batch_size):
outfilepath = os.path.join(outpath, "mnist.recordio")
convert_2_recordio(mnist.train, outfilepath, batch_size, [784], [1])
def prepare_cifar10(outpath, batch_size):
outfilepath = os.path.join(outpath, "cifar.recordio")
convert_2_recordio(cifar.train10, outfilepath, batch_size, [3, 32, 32], [1])
def prepare_flowers(outpath, batch_size):
outfilepath = os.path.join(outpath, "flowers.recordio")
convert_2_recordio(flowers.train, outfilepath, batch_size, [3, 224, 224],
[1])
def default_mapper(sample):
img, label = sample
img = image.simple_transform(
img, 256, 224, True, mean=[103.94, 116.78, 123.68])
return img.flatten().astype('float32'), label
def imagenet_train(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "train.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
# shuffle all, this is slow
random.shuffle(imgfilelist)
def train_reader():
for idx, imgfile in enumerate(imgfilelist):
data = image.load_image(
os.path.join(data_dir, "train", imgfile.lower()))
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, train_reader)
def imagenet_test(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "val.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
def test_reader():
for idx, imgfile in enumerate(imgfilelist):
base_path = os.path.join(data_dir, "val", imgfile.split(".")[0])
image_path = ".".join([base_path, "jpeg"])
data = image.load_image(image_path)
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, test_reader)
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
def convert_reader_to_recordio_files(
filename,
batch_per_file,
reader_creator,
feeder,
compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000,
feed_order=None):
if feed_order is None:
feed_order = feeder.feed_names
f_name, f_ext = os.path.splitext(filename)
assert (f_ext == ".recordio")
lines = []
f_idx = 0
counter = 0
for idx, batch in enumerate(reader_creator()):
lines.append(batch)
if idx >= batch_per_file and idx % batch_per_file == 0:
filename = "%s-%05d%s" % (f_name, f_idx, f_ext)
with fluid.recordio_writer.create_recordio_writer(
filename, compressor, max_num_records) as writer:
for l in lines:
res = feeder.feed(l)
for each in feed_order:
writer.append_tensor(res[each])
writer.complete_append_tensor()
counter += 1
lines = []
f_idx += 1
print("written file: ", filename)
return counter
def prepare_imagenet(inpath, outpath, batch_size):
r = paddle.batch(imagenet_train(inpath), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[
fluid.layers.data(
name="image", shape=[3, 224, 224]), fluid.layers.data(
name="label", shape=[1], dtype='int64')
],
place=fluid.CPUPlace())
outpath = os.path.join(outpath, "imagenet.recordio")
convert_reader_to_recordio_files(outpath, 10000, r, feeder)
......@@ -434,7 +434,7 @@ def open_files(filenames,
shapes,
lod_levels,
dtypes,
thread_num,
thread_num=1,
buffer_size=None,
pass_num=1,
for_parallel=True):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册