未验证 提交 58cb18d9 编写于 作者: X Xin Pan 提交者: GitHub

Merge pull request #15322 from velconia/imperative_resnet

Imperative Resnet
......@@ -19,8 +19,6 @@ limitations under the License. */
#include <sstream>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
......
if(WITH_PYTHON)
cc_library(layer SRCS layer.cc DEPS proto_desc operator)
cc_library(tracer SRCS tracer.cc DEPS proto_desc)
cc_library(layer SRCS layer.cc DEPS proto_desc operator device_context blas)
cc_library(tracer SRCS tracer.cc DEPS proto_desc device_context)
cc_library(engine SRCS engine.cc)
endif()
......@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/imperative/layer.h"
#include <deque>
#include <limits>
#include <map>
......@@ -22,6 +23,9 @@
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
......@@ -34,22 +38,66 @@ std::map<int, py::object> py_funcs_;
using framework::Variable;
void AddTo(Variable* src, Variable* dst) {
framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
namespace detail {
template <typename T>
class TensorAddToFunctor : public boost::static_visitor<> {
public:
TensorAddToFunctor(int64_t numel, const T* x, T* y)
: numel_(numel), x_(x), y_(y) {}
void operator()(const platform::CPUPlace& place) {
platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
platform::DeviceContextPool::Instance().Get(place));
auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
blas.AXPY(numel_, 1., x_, y_);
}
#ifdef PADDLE_WITH_CUDA
void operator()(const platform::CUDAPlace& place) {
platform::CUDADeviceContext* ctx =
dynamic_cast<platform::CUDADeviceContext*>(
platform::DeviceContextPool::Instance().Get(place));
auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
blas.AXPY(numel_, 1., x_, y_);
}
#else
void operator()(const platform::CUDAPlace& place) {
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
}
#endif
// there is NO blas in CUDAPinnedPlace
void operator()(const platform::CUDAPinnedPlace& place) {
PADDLE_THROW("Do NOT support gradient merge in place %s", place);
}
private:
int64_t numel_;
const T* x_;
T* y_;
};
} // namespace detail
void AddTo(Variable* src, Variable* dst, platform::Place place) {
framework::Tensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
framework::Tensor* src_tensor = src->GetMutable<framework::LoDTensor>();
// FIXME(minqiyang): loss_grad op will pass a zero grad of label
// ugly fix for it
if (src_tensor->numel() == 0) {
return;
}
PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
"dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
src_tensor->numel());
float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
const float* src_data = src_tensor->data<float>();
for (int64_t i = 0; i < src_tensor->numel(); ++i) {
dst_data[i] += src_data[i];
}
detail::TensorAddToFunctor<float> func(
src_tensor->numel(), src_tensor->data<float>(),
dst_tensor->mutable_data<float>(place));
boost::apply_visitor(func, place);
}
class Autograd {
......@@ -120,6 +168,36 @@ class Autograd {
}
};
std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
const bool blocking) const {
PADDLE_ENFORCE(var_->IsInitialized(),
"Variable must be initialized when getting numpy tensor");
std::unique_ptr<VarBase> new_var(new VarBase());
framework::LoDTensor* tensor =
new_var->var_->GetMutable<framework::LoDTensor>();
tensor->Resize(var_->Get<framework::LoDTensor>().dims());
tensor->set_lod(var_->Get<framework::LoDTensor>().lod());
if (blocking) {
platform::DeviceContext* dev_ctx =
platform::DeviceContextPool::Instance().Get(dst_place);
framework::TensorCopySync(var_->Get<framework::LoDTensor>(), dst_place,
tensor);
dev_ctx->Wait();
} else {
framework::TensorCopy(var_->Get<framework::LoDTensor>(), dst_place, tensor);
}
if (platform::is_gpu_place(dst_place)) {
VLOG(3) << "copy tensor " << var_desc_->Name() << " from gpu";
}
return new_var;
}
framework::LoDTensor& VarBase::GradValue() {
VLOG(3) << "get var grad " << var_desc_->Name();
return *(grads_->var_->GetMutable<framework::LoDTensor>());
......@@ -162,9 +240,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
framework::Scope scope;
platform::CPUPlace place;
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
p.op.RuntimeInferShape(scope, place, ctx);
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_);
p.op.RuntimeInferShape(scope, place_, ctx);
p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
}
......@@ -176,7 +253,7 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
for (size_t i = 0; i < outputs.size(); ++i) {
framework::Variable* grad = outputs[i];
framework::Variable* orig_grad = origin_outputs[i];
AddTo(grad, orig_grad);
AddTo(grad, orig_grad, place_);
delete grad;
}
}
......@@ -188,8 +265,10 @@ void VarBase::RunBackward() {
VLOG(3) << "start backward";
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
float* data = grads_t->mutable_data<float>(platform::CPUPlace());
std::fill(data, data + grads_t->numel(), 1.0);
operators::math::set_constant(
*(platform::DeviceContextPool::Instance().Get(
var_->GetMutable<framework::LoDTensor>()->place())),
grads_t, 1.0);
PADDLE_ENFORCE(
grads_ ==
......
......@@ -21,17 +21,21 @@
#include <map> // NOLINT
#include <string> // NOLINT
#include <vector> // NOLINT
#include <memory> // NOLINT
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/imperative/type_defs.h"
namespace paddle {
namespace imperative {
class VarBase;
namespace py = ::pybind11;
class PreparedOp {
......@@ -81,6 +85,8 @@ class PreparedOp {
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
}
inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }
const framework::OperatorBase& op;
const framework::RuntimeContext& ctx;
framework::OperatorWithKernel::OpKernelFunc func;
......@@ -148,6 +154,9 @@ class VarBase {
framework::LoDTensor& GradValue();
std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
const bool blocking) const;
inline std::string GradName() const {
PADDLE_ENFORCE(
var_desc_,
......@@ -176,7 +185,8 @@ class OpBase {
: op_desc_(nullptr),
forward_id_(-1),
grad_op_desc_(nullptr),
backward_id_(-1) {}
backward_id_(-1),
place_(platform::CPUPlace()) {}
virtual ~OpBase() {
if (grad_op_desc_) delete grad_op_desc_;
......@@ -193,6 +203,8 @@ class OpBase {
framework::OpDesc* grad_op_desc_;
int backward_id_;
platform::Place place_;
VarBasePtrMap input_vars_;
VarBasePtrMap output_vars_;
OpBasePtrMap pre_ops_;
......
......@@ -14,6 +14,10 @@
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace imperative {
......@@ -31,16 +35,38 @@ void CreateGradOp(const framework::OpDesc& op_desc,
*grad_op_desc = grad_op_descs[0].release();
}
void InitVar(framework::Variable* var, framework::Variable* grad_var) {
void InitVar(framework::Variable* var, framework::Variable* grad_var,
platform::DeviceContext* dev_ctx) {
PADDLE_ENFORCE_NOT_NULL(dev_ctx,
"Could not get valid device from forward op");
auto& var_t = var->Get<framework::LoDTensor>();
float* data =
grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
var_t.dims(), platform::CPUPlace());
std::fill(data, data + var_t.numel(), 0.0);
grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
var_t.dims(), dev_ctx->GetPlace());
operators::math::set_constant(
*dev_ctx, grad_var->GetMutable<framework::LoDTensor>(), 0.0);
}
platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
platform::Place result = place;
for (auto it : inputs) {
for (VarBase* var : it.second) {
platform::Place tmp_place =
var->var_->Get<framework::LoDTensor>().place();
if (!platform::is_same_place(tmp_place, result)) {
PADDLE_THROW(
"Input variable should keep in the same place: %s, but get place: "
"%s of input %s instead",
result, tmp_place, it.first);
}
}
}
return result;
}
void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
const VarBasePtrMap& outputs, framework::BlockDesc* block,
const platform::Place expected_place,
const bool stop_gradient) {
std::map<std::string, VarBase*> vars;
......@@ -105,10 +131,11 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
framework::Scope scope;
platform::CPUPlace place;
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
p.op.RuntimeInferShape(scope, place, ctx);
p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
op->place_ = GetExpectedPlace(expected_place, inputs);
PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
prepared_op.func(framework::ExecutionContext(
prepared_op.op, scope, *prepared_op.dev_ctx, prepared_op.ctx));
if (!stop_gradient) {
framework::OpDesc* grad_op_desc;
......@@ -131,7 +158,8 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
} else {
VarBase* var = vars[var_it->second];
if (!var->grads_->var_->IsInitialized()) {
InitVar(var->var_, var->grads_->var_);
InitVar(var->var_, var->grads_->var_,
prepared_op.GetDeviceContext());
}
// Douts.
grad_in_vars.push_back(var->grads_->var_);
......@@ -144,10 +172,13 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
for (const std::string& grad_outvar : it.second) {
block->FindRecursiveOrCreateVar(grad_outvar);
auto var_it = grad_to_var->find(grad_outvar);
PADDLE_ENFORCE(var_it != grad_to_var->end());
PADDLE_ENFORCE(var_it != grad_to_var->end(),
"Could not found the grad op output var, should this "
"operator %s's stop gradient be True",
op_desc->Type());
VarBase* var = vars[var_it->second];
if (!var->grads_->var_->IsInitialized()) {
InitVar(var->var_, var->grads_->var_);
InitVar(var->var_, var->grads_->var_, prepared_op.GetDeviceContext());
}
grad_out_vars.push_back(var->grads_->var_);
}
......@@ -189,16 +220,23 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
for (VarBase* out : outputs) {
grad_input_vars.push_back(out->var_);
}
platform::CPUPlace place;
for (VarBase* out : outputs) {
grad_input_vars.push_back(out->grads_->var_);
if (!grad_input_vars.back()->IsInitialized()) {
InitVar(out->var_, grad_input_vars.back());
// TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
InitVar(out->var_, grad_input_vars.back(),
platform::DeviceContextPool::Instance().Get(place));
}
}
for (const VarBase* inp : inputs) {
grad_output_vars.push_back(inp->grads_->var_);
if (!grad_output_vars.back()->IsInitialized()) {
InitVar(inp->var_, grad_output_vars.back());
// TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
InitVar(inp->var_, grad_output_vars.back(),
platform::DeviceContextPool::Instance().Get(place));
}
}
}
......
......@@ -22,6 +22,7 @@
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/engine.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace imperative {
......@@ -34,21 +35,25 @@ void CreateGradOp(const framework::OpDesc& op_desc,
void InitVar(framework::Variable* var, framework::Variable* grad_var);
platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs);
class Tracer {
public:
explicit Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}
virtual ~Tracer() {}
void Trace(OpBase* op,
const std::map<std::string, std::vector<VarBase*>>& inputs,
const std::map<std::string, std::vector<VarBase*>>& outputs,
framework::BlockDesc* block, const bool stop_gradient = false);
void Trace(OpBase* op, const VarBasePtrMap& inputs,
const VarBasePtrMap& outputs, framework::BlockDesc* block,
const platform::Place expected_place,
const bool stop_gradient = false);
std::vector<VarBase*> PyTrace(OpBase* op, const std::vector<VarBase*>& inputs,
bool stop_gradient = false);
private:
platform::Place GetPlace(const VarBasePtrMap& inputs);
framework::BlockDesc* root_block_;
};
......
......@@ -30,8 +30,9 @@ platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
auto it = device_contexts_.find(place);
if (it == device_contexts_.end()) {
PADDLE_THROW(
"'Place' is not supported, Please re-compile with WITH_GPU "
"option");
"Place %s is not supported, Please re-compile with WITH_GPU "
"option",
place);
}
return it->second.get().get();
}
......
......@@ -15,18 +15,38 @@ limitations under the License. */
#include "paddle/fluid/pybind/imperative.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/imperative/type_defs.h"
namespace paddle {
namespace pybind {
// Bind Methods
void BindTracer(pybind11::module *m) {
void BindTracer(pybind11::module* m) {
pybind11::class_<imperative::Tracer>(*m, "Tracer", "")
.def("__init__",
[](imperative::Tracer &self, framework::BlockDesc *root_block) {
[](imperative::Tracer& self, framework::BlockDesc* root_block) {
new (&self) imperative::Tracer(root_block);
})
.def("trace", &imperative::Tracer::Trace)
.def("trace",
[](imperative::Tracer& self, imperative::OpBase* op,
const imperative::VarBasePtrMap& inputs,
const imperative::VarBasePtrMap& outputs,
framework::BlockDesc* block,
const platform::CPUPlace expected_place,
const bool stop_gradient = false) {
self.Trace(op, inputs, outputs, block, expected_place,
stop_gradient);
})
.def("trace",
[](imperative::Tracer& self, imperative::OpBase* op,
const imperative::VarBasePtrMap& inputs,
const imperative::VarBasePtrMap& outputs,
framework::BlockDesc* block,
const platform::CUDAPlace expected_place,
const bool stop_gradient = false) {
self.Trace(op, inputs, outputs, block, expected_place,
stop_gradient);
})
.def("py_trace", &imperative::Tracer::PyTrace,
pybind11::return_value_policy::take_ownership);
}
......
......@@ -138,6 +138,22 @@ PYBIND11_MODULE(core, m) {
.def("_grad_ivar",
[](const imperative::VarBase &self) { return self.grads_; },
py::return_value_policy::reference)
.def("_copy_to",
[](const imperative::VarBase &self, const platform::CPUPlace &place,
bool blocking) {
std::unique_ptr<imperative::VarBase> new_var =
self.NewVarBase(place, blocking);
return new_var.release();
},
py::return_value_policy::take_ownership)
.def("_copy_to",
[](const imperative::VarBase &self, const platform::CUDAPlace &place,
bool blocking) {
std::unique_ptr<imperative::VarBase> new_var =
self.NewVarBase(place, blocking);
return new_var.release();
},
py::return_value_policy::take_ownership)
.def("value", [](const imperative::VarBase &self) { return self.var_; },
py::return_value_policy::reference)
.def_property(
......
......@@ -70,6 +70,7 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()
_imperative_tracer_ = None
_imperative_current_expected_place_ = None
def _in_imperative_mode():
......@@ -80,6 +81,10 @@ def _imperative_tracer():
return _imperative_tracer_
def _current_expected_place():
return _imperative_current_expected_place_
class NameScope(object):
def __init__(self, name="", parent=None):
self._children = dict()
......@@ -383,8 +388,8 @@ class Variable(object):
self._ivar.stop_gradient = stop_gradient
def _numpy(self):
tensor = self._ivar.value().get_tensor()
return np.array(tensor)
new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
return np.array(new_ivar.value().get_tensor())
def _backward(self):
self._ivar._run_backward()
......@@ -1311,6 +1316,7 @@ class Block(object):
def _trace_op(self, op, stop_gradient=False):
if _in_imperative_mode():
_imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
_imperative_current_expected_place_,
stop_gradient)
def _insert_op(self, index, *args, **kwargs):
......@@ -2502,5 +2508,18 @@ def _imperative_guard(tracer):
global _imperative_tracer_
tmp_trace = _imperative_tracer_
_imperative_tracer_ = tracer
yield
_imperative_tracer_ = tmp_trace
@contextlib.contextmanager
def _imperative_place_guard(place):
global _imperative_current_expected_place_
tmp_place = _imperative_current_expected_place_
_imperative_current_expected_place_ = place
yield
_imperative_current_expected_place_ = tmp_place
......@@ -25,18 +25,28 @@ def enabled():
@contextlib.contextmanager
def guard():
def guard(place=None):
train = framework.Program()
startup = framework.Program()
tracer = core.Tracer(train.current_block().desc)
if place is None:
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
with framework.program_guard(train, startup):
with framework.unique_name.guard():
with framework._imperative_guard(tracer):
yield
with framework._imperative_place_guard(place):
yield
def to_variable(value, block=None):
if isinstance(value, np.ndarray):
assert enabled(), "to_variable could only be called in imperative mode"
if not block:
block = framework.default_main_program().current_block()
py_var = framework.Variable(
......@@ -47,9 +57,7 @@ def to_variable(value, block=None):
dtype=value.dtype)
var = py_var._ivar.value()
tensor = var.get_tensor()
tensor.set(value, core.CPUPlace())
tensor.set(value, framework._current_expected_place())
return py_var
elif isinstance(value, framework.Variable):
return value
else:
raise ValueError("Unsupported type %s" % type(value))
......@@ -27,6 +27,7 @@ __all__ = [
'Conv2D',
'Pool2D',
'FC',
'BatchNorm',
]
......@@ -55,7 +56,8 @@ class Conv2D(layers.Layer):
param_attr=param_attr,
bias_attr=bias_attr,
dtype=dtype,
name=name)
name=name,
act=act)
self._groups = groups
self._stride = utils.convert_to_list(stride, 2, 'stride')
......@@ -141,6 +143,7 @@ class Conv2D(layers.Layer):
outputs={'Out': [pre_act]},
attrs={'axis': 1})
# Currently, we don't support inplace in imperative mode
return self._helper.append_activation(pre_act)
......@@ -216,6 +219,7 @@ class FC(layers.Layer):
act=None,
name=None):
super(FC, self).__init__()
self._size = size
self._num_flatten_dims = num_flatten_dims
self._dtype = dtype
......@@ -241,6 +245,16 @@ class FC(layers.Layer):
dtype=self._dtype,
is_bias=False)
if self._helper.bias_attr:
size = list([self._size])
self._b = self._helper.create_parameter(
attr=self._helper.bias_attr,
shape=size,
dtype=self._dtype,
is_bias=True)
else:
self._b = None
def forward(self, input):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
......@@ -253,28 +267,155 @@ class FC(layers.Layer):
"y_num_col_dims": 1
})
out = self._helper.create_variable_for_type_inference(self._dtype)
pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="sum",
inputs={"X": [tmp]},
outputs={"Out": out},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
bias_attr = self._helper.bias_attr
if bias_attr:
# add bias
size = list(out.shape[1:])
if not self._built:
self._b = self._helper.create_parameter(
attr=bias_attr, shape=size, dtype=out.dtype, is_bias=True)
bias_out = self._helper.create_variable_for_type_inference(
dtype=out.dtype)
if self._b:
pre_activation = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type='elementwise_add',
inputs={'X': [out],
inputs={'X': [pre_bias],
'Y': [self._b]},
outputs={'Out': [bias_out]},
attrs={'axis': 1})
out = bias_out
# add activation
return self._helper.append_activation(out)
outputs={'Out': [pre_activation]},
attrs={'axis': self._num_flatten_dims})
else:
pre_activation = pre_bias
# Currently, we don't support inplace in imperative mode
return self._helper.append_activation(pre_activation)
class BatchNorm(layers.Layer):
def __init__(self,
num_channels,
act=None,
is_test=False,
momentum=0.9,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
dtype=core.VarDesc.VarType.FP32,
data_layout='NCHW',
in_place=False,
name=None,
moving_mean_name=None,
moving_variance_name=None,
do_model_average_for_mean_and_var=False,
fuse_with_relu=False,
use_global_stats=False):
super(BatchNorm, self).__init__()
assert bias_attr is not False, "bias_attr should not be False in batch_norm."
from ..layer_helper import LayerHelper
self._helper = LayerHelper(
'batch_norm',
param_attr=param_attr,
bias_attr=bias_attr,
name=name,
act=act)
if dtype == core.VarDesc.VarType.FP16:
self._dtype = core.VarDesc.VarType.FP32
else:
self._dtype = dtype
param_shape = [num_channels]
# create parameter
self._scale = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=param_shape,
dtype=self._dtype,
default_initializer=Constant(1.0))
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.param_attr.learning_rate == 0.:
# self._scale.stop_gradient = True
self._bias = self._helper.create_parameter(
attr=self._helper.bias_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=True)
# TODO(minqiyang): change stop_gradient sign to trainable to align with static graph
# # setting stop_gradient=True to reduce computation
# if use_global_stats and self._helper.bias_attr.learning_rate == 0.:
# self._bias.stop_gradient = True
self._mean = self._helper.create_parameter(
attr=ParamAttr(
name=moving_mean_name,
initializer=Constant(0.0),
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=self._dtype)
self._mean.stop_gradient = True
self._variance = self._helper.create_parameter(
attr=ParamAttr(
name=moving_variance_name,
initializer=Constant(1.0),
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=self._dtype)
self._variance.stop_gradient = True
self._in_place = in_place
self._momentum = momentum
self._epsilon = epsilon
self._is_test = is_test
self._fuse_with_relu = fuse_with_relu
self._use_global_stats = use_global_stats
def _build_once(self, input):
pass
def forward(self, input):
# create output
# mean and mean_out share the same memory
mean_out = self._mean
# variance and variance out share the same memory
variance_out = self._variance
saved_mean = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
saved_variance = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="batch_norm",
inputs={
"X": input,
"Scale": self._scale,
"Bias": self._bias,
"Mean": self._mean,
"Variance": self._variance
},
outputs={
"Y": batch_norm_out,
"MeanOut": mean_out,
"VarianceOut": variance_out,
"SavedMean": saved_mean,
"SavedVariance": saved_variance
},
attrs={
"momentum": self._momentum,
"epsilon": self._epsilon,
"is_test": self._is_test,
"use_mkldnn": False,
"fuse_with_relu": self._fuse_with_relu,
"use_global_stats": self._use_global_stats
})
# Currently, we don't support inplace in imperative mode
return self._helper.append_activation(batch_norm_out)
......@@ -435,7 +435,10 @@ class LayerHelper(object):
act_type = act.pop('type')
tmp = input_var
# NOTE(dzhwinter): some activation support inplace compution.
if not core.IsInplace(act_type):
# NOTE(minqiyang): currently, we don't support inplace in imperative mode
if not imperative_base.enabled() and core.IsInplace(act_type):
tmp = input_var
else:
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
self.append_op(
type=act_type,
......
......@@ -321,7 +321,7 @@ def append_LARS(params_grads, learning_rate, weight_decay):
The decayed learning rate
Examples:
.. code-block:: python
learning_rate *= local_gw_ratio * sqrt(sumsq(param))
/ (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
"""
......
......@@ -2874,7 +2874,7 @@ def batch_norm(input,
attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
# setting stop_gradient=True to reduce computation
if use_global_stats and helper.bias_attr.learning_rate == 0.:
scale.stop_gradient = True
bias.stop_gradient = True
mean = helper.create_parameter(
attr=ParamAttr(
......@@ -5856,7 +5856,8 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1):
type='increment',
inputs={'X': [counter]},
outputs={'Out': [counter]},
attrs={'step': float(step)})
attrs={'step': float(step)},
stop_gradient=True)
counter.stop_gradient = True
return counter
......@@ -9475,7 +9476,7 @@ def teacher_student_sigmoid_loss(input,
by the previous operator.
label (Variable|list): the ground truth which is a 2-D tensor with
shape [N x 1], where N is the batch size.
soft_max_up_bound (float): if input > soft_max_up_bound, will be bound
soft_max_up_bound (float): if input > soft_max_up_bound, will be bound
soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound
Returns:
......
......@@ -382,7 +382,8 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
'dtype': out.dtype,
'value': float(value),
'force_cpu': force_cpu or force_init_on_cpu()
})
},
stop_gradient=True)
out.stop_gradient = True
return out
......
......@@ -301,10 +301,10 @@ class Optimizer(object):
no_grad_set (set|None): set of Variables should be ignored.
callbacks (list|None): list of callables to run when appending backward
operator for one parameter.
Return:
list: list of (param, grad) pair, grad is the output of backward.
Examples:
See examples in `apply_gradients`.
"""
......@@ -322,10 +322,10 @@ class Optimizer(object):
Args:
params_grads (list): list of (param, grad) pair to do optimization.
Returns:
list: A list of operators appended to the current program.
Examples:
.. code-block:: python
......@@ -364,7 +364,7 @@ class Optimizer(object):
This method combines interface `backward()` and
`apply_gradients()` into one.
Args:
loss (Variable): loss variable to run optimizations.
startup_program (Program): startup_program for initializing parameters
......@@ -381,18 +381,21 @@ class Optimizer(object):
optimize_ops = []
if imperative_base.enabled():
if parameter_list is not None:
params_grads = parameter_list
parameters = parameter_list
else:
parameters = program.global_block().all_parameters()
params_grads = []
for param in parameters:
# create gradient variable
grad_var = Variable(
block=loss.block,
name=param._ivar._grad_name(),
stop_gradient=True,
ivar=param._ivar._grad_ivar())
params_grads.append((param, grad_var))
params_grads = []
for param in parameters:
if param.stop_gradient:
continue
# create gradient variable
grad_var = Variable(
block=loss.block,
name=param._ivar._grad_name(),
stop_gradient=True,
ivar=param._ivar._grad_ivar())
params_grads.append((param, grad_var))
with program_guard(program, startup_program):
optimize_ops = self._create_optimization_pass(params_grads)
else:
......
......@@ -84,6 +84,7 @@ list(REMOVE_ITEM TEST_OPS test_parallel_executor_transformer)
list(REMOVE_ITEM TEST_OPS test_image_classification_resnet)
list(REMOVE_ITEM TEST_OPS test_bilinear_interp_op)
list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
list(REMOVE_ITEM TEST_OPS test_imperative_resnet)
foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP})
endforeach(TEST_OP)
......@@ -91,6 +92,8 @@ py_test_modules(test_adam_op_multi_thread MODULES test_adam_op ENVS FLAGS_inner_
py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR} SERIAL)
py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL)
py_test_modules(test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1)
if(WITH_DISTRIBUTE)
py_test_modules(test_dist_train MODULES test_dist_train SERIAL)
set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20)
......
......@@ -133,7 +133,8 @@ class TestImperative(unittest.TestCase):
x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
param_grads = fluid.backward.append_backward(
x, parameter_list=[x1.name])[0]
exe = fluid.Executor(fluid.CPUPlace())
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
......@@ -160,7 +161,8 @@ class TestImperative(unittest.TestCase):
x = l(inp)[0]
param_grads = fluid.backward.append_backward(
x, parameter_list=[l._x_for_debug.name])[0]
exe = fluid.Executor(fluid.CPUPlace())
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
......@@ -186,7 +188,8 @@ class TestImperative(unittest.TestCase):
out = mlp(inp)
param_grads = fluid.backward.append_backward(
out, parameter_list=[mlp._fc1._w.name])[0]
exe = fluid.Executor(fluid.CPUPlace())
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
static_out, static_grad = exe.run(
......
......@@ -20,6 +20,7 @@ import sys
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope
......@@ -58,7 +59,7 @@ class Generator(fluid.imperative.Layer):
class TestImperativeMnist(unittest.TestCase):
def test_mnist_cpu_float32(self):
def test_gan_float32(self):
seed = 90
startup = fluid.Program()
......@@ -115,7 +116,8 @@ class TestImperativeMnist(unittest.TestCase):
sgd = SGDOptimizer(learning_rate=1e-3)
sgd.minimize(g_loss)
exe = fluid.Executor(fluid.CPUPlace())
exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0))
static_params = dict()
with fluid.scope_guard(scope):
img = np.ones([2, 1], np.float32)
......
......@@ -145,7 +145,8 @@ class TestImperativeMnist(unittest.TestCase):
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CPUPlace())
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import six
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope
batch_size = 8
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": batch_size,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
},
"batch_size": batch_size,
"lr": 0.1,
"total_images": 1281164,
}
def optimizer_setting(params):
ls = params["learning_strategy"]
if ls["name"] == "piecewise_decay":
if "total_images" not in params:
total_images = 1281167
else:
total_images = params["total_images"]
batch_size = ls["batch_size"]
step = int(total_images / batch_size + 1)
bd = [step * e for e in ls["epochs"]]
base_lr = params["lr"]
lr = []
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
# TODO(minqiyang): Add learning rate scheduler support to imperative mode
# optimizer = fluid.optimizer.Momentum(
# learning_rate=params["lr"],
# learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
# momentum=0.9,
# regularization=fluid.regularizer.L2Decay(1e-4))
return optimizer
class ConvBNLayer(fluid.imperative.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=None)
self._batch_norm = BatchNorm(num_filters, act=act)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class BottleneckBlock(fluid.imperative.Layer):
def __init__(self, num_channels, num_filters, stride, shortcut=True):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 4,
filter_size=1,
act=None)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 4,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 4
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=conv2)
layer_helper = LayerHelper('elementwise_add_activation', act='relu')
return layer_helper.append_activation(y)
class ResNet(fluid.imperative.Layer):
def __init__(self, layers=50, class_dim=102):
super(ResNet, self).__init__()
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
self.conv = ConvBNLayer(
num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
self.pool2d_max = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
shortcut=shortcut)
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
import math
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.out = FC(size=class_dim,
act='softmax',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = self.out(y)
return y
class TestImperativeResnet(unittest.TestCase):
def test_resnet_float32(self):
seed = 90
batch_size = train_parameters["batch_size"]
batch_num = 1
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
resnet = ResNet()
optimizer = optimizer_setting(train_parameters)
np.random.seed(seed)
import random
random.seed = seed
train_reader = paddle.batch(
paddle.dataset.flowers.train(use_xmap=False),
batch_size=batch_size)
dy_param_init_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_init_value[param.name] = param._numpy()
for batch_id, data in enumerate(train_reader()):
if batch_id >= batch_num:
break
dy_x_data = np.array(
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
batch_size, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label._stop_gradient = True
out = resnet(img)
loss = fluid.layers.cross_entropy(input=out, label=label)
avg_loss = fluid.layers.mean(x=loss)
dy_out = avg_loss._numpy()
if batch_id == 0:
for param in fluid.default_main_program().global_block(
).all_parameters():
if param.name not in dy_param_init_value:
dy_param_init_value[param.name] = param._numpy()
avg_loss._backward()
dy_grad_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
if not param.stop_gradient:
np_array = np.array(param._ivar._grad_ivar().value()
.get_tensor())
dy_grad_value[param.name + core.grad_var_suffix(
)] = np_array
optimizer.minimize(avg_loss)
dy_param_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_value[param.name] = param._numpy()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
resnet = ResNet()
optimizer = optimizer_setting(train_parameters)
np.random.seed(seed)
import random
random.seed = seed
train_reader = paddle.batch(
paddle.dataset.flowers.train(use_xmap=False),
batch_size=batch_size)
img = fluid.layers.data(
name='pixel', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = resnet(img)
loss = fluid.layers.cross_entropy(input=out, label=label)
avg_loss = fluid.layers.mean(x=loss)
optimizer.minimize(avg_loss)
# initialize params and fetch them
static_param_init_value = {}
static_param_name_list = []
static_grad_name_list = []
for param in fluid.default_startup_program().global_block(
).all_parameters():
static_param_name_list.append(param.name)
for param in fluid.default_main_program().global_block(
).all_parameters():
if not param.stop_gradient:
static_grad_name_list.append(param.name +
core.grad_var_suffix())
out = exe.run(fluid.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init_value[static_param_name_list[i]] = out[i]
for batch_id, data in enumerate(train_reader()):
if batch_id >= batch_num:
break
static_x_data = np.array(
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
[batch_size, 1])
fetch_list = [avg_loss.name]
fetch_list.extend(static_param_name_list)
fetch_list.extend(static_grad_name_list)
out = exe.run(fluid.default_main_program(),
feed={"pixel": static_x_data,
"label": y_data},
fetch_list=fetch_list)
static_param_value = {}
static_grad_value = {}
static_out = out[0]
param_start_pos = 1
grad_start_pos = len(static_param_name_list) + param_start_pos
for i in range(param_start_pos,
len(static_param_name_list) + param_start_pos):
static_param_value[static_param_name_list[
i - param_start_pos]] = out[i]
for i in range(grad_start_pos,
len(static_grad_name_list) + grad_start_pos):
static_grad_value[static_grad_name_list[
i - grad_start_pos]] = out[i]
self.assertTrue(np.allclose(static_out, dy_out))
self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
for key, value in six.iteritems(static_param_init_value):
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
self.assertTrue(np.isfinite(value.all()))
self.assertFalse(np.isnan(value.any()))
self.assertEqual(len(dy_grad_value), len(static_grad_value))
for key, value in six.iteritems(static_grad_value):
self.assertTrue(np.allclose(value, dy_grad_value[key]))
self.assertTrue(np.isfinite(value.all()))
self.assertFalse(np.isnan(value.any()))
self.assertEqual(len(dy_param_value), len(static_param_value))
for key, value in six.iteritems(static_param_value):
self.assertTrue(np.allclose(value, dy_param_value[key]))
self.assertTrue(np.isfinite(value.all()))
self.assertFalse(np.isnan(value.any()))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册