未验证 提交 32fb7a71 编写于 作者: C channings 提交者: GitHub

fix cpp bug cannot load video (#845)

上级 8a95c4b2
...@@ -85,7 +85,7 @@ make ...@@ -85,7 +85,7 @@ make
```shell ```shell
sh ./scripts/build.sh sh ./scripts/build.sh
``` ```
**注意**: OPENCV依赖OPENBLAS,Ubuntu用户需确认系统是否已存在`libopenblas.so`。如未安装,可执行apt-get install libopenblas-dev进行安装。
### Step5: 预测及可视化 ### Step5: 预测及可视化
编译成功后,预测入口程序为`build/main`其主要命令参数说明如下: 编译成功后,预测入口程序为`build/main`其主要命令参数说明如下:
...@@ -95,9 +95,10 @@ make ...@@ -95,9 +95,10 @@ make
| image_path | 要预测的图片文件路径 | | image_path | 要预测的图片文件路径 |
| video_path | 要预测的视频文件路径 | | video_path | 要预测的视频文件路径 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)| | use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode |使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)| | --run_mode |使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
**注意**如果同时设置了`video_path``image_path`,程序仅预测`video_path` **注意**: 如果同时设置了`video_path``image_path`,程序仅预测`video_path`
`样例一` `样例一`
...@@ -111,7 +112,7 @@ make ...@@ -111,7 +112,7 @@ make
`样例二`: `样例二`:
```shell ```shell
#使用 `GPU`预测视频`/root/projects/videos/test.avi` #使用 `GPU`预测视频`/root/projects/videos/test.mp4`
./build/main --model_dir=/root/projects/models/yolov3_darknet --video_path=/root/projects/images/test.avi --use_gpu=1 ./build/main --model_dir=/root/projects/models/yolov3_darknet --video_path=/root/projects/images/test.mp4 --use_gpu=1
``` ```
视频文件`可视化预测结果`会保存在当前目录下`output.avi`文件中。 视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
...@@ -96,6 +96,7 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release ...@@ -96,6 +96,7 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
| image_path | 要预测的图片文件路径 | | image_path | 要预测的图片文件路径 |
| video_path | 要预测的视频文件路径 | | video_path | 要预测的视频文件路径 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)| | use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| gpu_id | 指定进行推理的GPU device id(默认值为0)|
**注意**:如果同时设置了`video_path``image_path`,程序仅预测`video_path` **注意**:如果同时设置了`video_path``image_path`,程序仅预测`video_path`
...@@ -111,8 +112,8 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release ...@@ -111,8 +112,8 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
`样例二`: `样例二`:
```shell ```shell
#使用`GPU`测试视频 `D:\\videos\\test.avi` #使用`GPU`测试视频 `D:\\videos\\test.mp4`
.\main --model_dir=D:\\models\\yolov3_darknet --video_path=D:\\videos\\test.jpeg --use_gpu=1 .\main --model_dir=D:\\models\\yolov3_darknet --video_path=D:\\videos\\test.mp4 --use_gpu=1
``` ```
视频文件`可视化预测结果`会保存在当前目录下`output.avi`文件中。 视频文件目前支持`.mp4`格式的预测,`可视化预测结果`会保存在当前目录下`output.mp4`文件中。
...@@ -54,12 +54,14 @@ cv::Mat VisualizeResult(const cv::Mat& img, ...@@ -54,12 +54,14 @@ cv::Mat VisualizeResult(const cv::Mat& img,
class ObjectDetector { class ObjectDetector {
public: public:
explicit ObjectDetector(const std::string& model_dir, bool use_gpu = false, explicit ObjectDetector(const std::string& model_dir,
const std::string& run_mode = "fluid") { bool use_gpu=false,
const std::string& run_mode="fluid",
const int gpu_id=0) {
config_.load_config(model_dir); config_.load_config(model_dir);
threshold_ = config_.draw_threshold_; threshold_ = config_.draw_threshold_;
preprocessor_.Init(config_.preprocess_info_, config_.arch_); preprocessor_.Init(config_.preprocess_info_, config_.arch_);
LoadModel(model_dir, use_gpu, config_.min_subgraph_size_, 1, run_mode); LoadModel(model_dir, use_gpu, config_.min_subgraph_size_, 1, run_mode, gpu_id);
} }
// Load Paddle inference model // Load Paddle inference model
...@@ -68,7 +70,8 @@ class ObjectDetector { ...@@ -68,7 +70,8 @@ class ObjectDetector {
bool use_gpu, bool use_gpu,
const int min_subgraph_size, const int min_subgraph_size,
const int batch_size = 1, const int batch_size = 1,
const std::string& run_mode = "fluid"); const std::string& run_mode = "fluid",
const int gpu_id=0);
// Run predictor // Run predictor
void Predict( void Predict(
......
# download pre-compiled opencv lib # download pre-compiled opencv lib
#OPENCV_URL=https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2
#if [ ! -d "./deps/opencv3.4.6gcc4.8ffmpeg/" ]; then
# mkdir -p deps
# cd deps
# wget -c ${OPENCV_URL}
# tar xvfj opencv3.4.6gcc4.8ffmpeg.tar.gz2
# cd ..
#fi
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2 OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
if [ ! -d "./deps/opencv3gcc4.8" ]; then if [ ! -d "./deps/opencv3gcc4.8" ]; then
mkdir -p deps mkdir -p deps
......
...@@ -18,7 +18,7 @@ CUDNN_LIB=/path/to/cudnn/lib/ ...@@ -18,7 +18,7 @@ CUDNN_LIB=/path/to/cudnn/lib/
# OPENCV 路径, 如果使用自带预编译版本可不修改 # OPENCV 路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ OPENCV_DIR=$(pwd)/deps/opencv3.4.6gcc4.8ffmpeg/
# 以下无需改动 # 以下无需改动
rm -rf build rm -rf build
......
...@@ -25,7 +25,8 @@ DEFINE_string(model_dir, "", "Path of inference model"); ...@@ -25,7 +25,8 @@ DEFINE_string(model_dir, "", "Path of inference model");
DEFINE_string(image_path, "", "Path of input image"); DEFINE_string(image_path, "", "Path of input image");
DEFINE_string(video_path, "", "Path of input video"); DEFINE_string(video_path, "", "Path of input video");
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
DEFINE_string(run_mode, "fluid", "mode of running(fluid/trt_fp32/trt_fp16)"); DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16)");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
void PredictVideo(const std::string& video_path, void PredictVideo(const std::string& video_path,
PaddleDetection::ObjectDetector* det) { PaddleDetection::ObjectDetector* det) {
...@@ -44,9 +45,9 @@ void PredictVideo(const std::string& video_path, ...@@ -44,9 +45,9 @@ void PredictVideo(const std::string& video_path,
// Create VideoWriter for output // Create VideoWriter for output
cv::VideoWriter video_out; cv::VideoWriter video_out;
std::string video_out_path = "output.avi"; std::string video_out_path = "output.mp4";
video_out.open(video_out_path.c_str(), video_out.open(video_out_path.c_str(),
CV_FOURCC('M', 'J', 'P', 'G'), 0x00000021,
video_fps, video_fps,
cv::Size(video_width, video_height), cv::Size(video_width, video_height),
true); true);
...@@ -60,6 +61,7 @@ void PredictVideo(const std::string& video_path, ...@@ -60,6 +61,7 @@ void PredictVideo(const std::string& video_path,
auto colormap = PaddleDetection::GenerateColorMap(labels.size()); auto colormap = PaddleDetection::GenerateColorMap(labels.size());
// Capture all frames and do inference // Capture all frames and do inference
cv::Mat frame; cv::Mat frame;
int frame_id = 0;
while (capture.read(frame)) { while (capture.read(frame)) {
if (frame.empty()) { if (frame.empty()) {
break; break;
...@@ -67,7 +69,18 @@ void PredictVideo(const std::string& video_path, ...@@ -67,7 +69,18 @@ void PredictVideo(const std::string& video_path,
det->Predict(frame, &result); det->Predict(frame, &result);
cv::Mat out_im = PaddleDetection::VisualizeResult( cv::Mat out_im = PaddleDetection::VisualizeResult(
frame, result, labels, colormap); frame, result, labels, colormap);
for (const auto& item : result) {
printf("In frame id %d, we detect: class=%d confidence=%.2f rect=[%d %d %d %d]\n",
frame_id,
item.class_id,
item.confidence,
item.rect[0],
item.rect[1],
item.rect[2],
item.rect[3]);
}
video_out.write(out_im); video_out.write(out_im);
frame_id += 1;
} }
capture.release(); capture.release();
video_out.release(); video_out.release();
...@@ -97,7 +110,7 @@ void PredictImage(const std::string& image_path, ...@@ -97,7 +110,7 @@ void PredictImage(const std::string& image_path,
std::vector<int> compression_params; std::vector<int> compression_params;
compression_params.push_back(CV_IMWRITE_JPEG_QUALITY); compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
compression_params.push_back(95); compression_params.push_back(95);
cv::imwrite("output.jpeg", vis_img, compression_params); cv::imwrite("output.jpg", vis_img, compression_params);
printf("Visualized output saved as output.jpeg\n"); printf("Visualized output saved as output.jpeg\n");
} }
...@@ -118,7 +131,7 @@ int main(int argc, char** argv) { ...@@ -118,7 +131,7 @@ int main(int argc, char** argv) {
// Load model and create a object detector // Load model and create a object detector
PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu, PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu,
FLAGS_run_mode); FLAGS_run_mode, FLAGS_gpu_id);
// Do inference on input video or image // Do inference on input video or image
if (!FLAGS_video_path.empty()) { if (!FLAGS_video_path.empty()) {
PredictVideo(FLAGS_video_path, &det); PredictVideo(FLAGS_video_path, &det);
......
...@@ -21,13 +21,14 @@ void ObjectDetector::LoadModel(const std::string& model_dir, ...@@ -21,13 +21,14 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
bool use_gpu, bool use_gpu,
const int min_subgraph_size, const int min_subgraph_size,
const int batch_size, const int batch_size,
const std::string& run_mode) { const std::string& run_mode,
const int gpu_id) {
paddle::AnalysisConfig config; paddle::AnalysisConfig config;
std::string prog_file = model_dir + OS_PATH_SEP + "__model__"; std::string prog_file = model_dir + OS_PATH_SEP + "__model__";
std::string params_file = model_dir + OS_PATH_SEP + "__params__"; std::string params_file = model_dir + OS_PATH_SEP + "__params__";
config.SetModel(prog_file, params_file); config.SetModel(prog_file, params_file);
if (use_gpu) { if (use_gpu) {
config.EnableUseGpu(100, 0); config.EnableUseGpu(100, gpu_id);
if (run_mode != "fluid") { if (run_mode != "fluid") {
auto precision = paddle::AnalysisConfig::Precision::kFloat32; auto precision = paddle::AnalysisConfig::Precision::kFloat32;
if (run_mode == "trt_fp16") { if (run_mode == "trt_fp16") {
...@@ -187,7 +188,6 @@ void ObjectDetector::Predict(const cv::Mat& im, ...@@ -187,7 +188,6 @@ void ObjectDetector::Predict(const cv::Mat& im,
if (output_size < 6) { if (output_size < 6) {
std::cerr << "[WARNING] No object detected." << std::endl; std::cerr << "[WARNING] No object detected." << std::endl;
return true;
} }
output_data_.resize(output_size); output_data_.resize(output_size);
out_tensor->copy_to_cpu(output_data_.data()); out_tensor->copy_to_cpu(output_data_.data());
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册