未验证 提交 8a95c4b2 编写于 作者: K Kaipeng Deng 提交者: GitHub

Add prune infer (#825)

* add prune infer.py
上级 ace2e5e1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import glob
import numpy as np
from PIL import Image
from paddle import fluid
from paddleslim.prune import Pruner
from paddleslim.analysis import flops
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint
from ppdet.data.reader import create_reader
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def get_save_image_name(output_dir, image_path):
"""
Get save image name from source image path.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
image_name = os.path.split(image_path)[-1]
name, ext = os.path.splitext(image_name)
return os.path.join(output_dir, "{}".format(name)) + ext
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--infer_img or --infer_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
def main():
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
main_arch = cfg.architecture
dataset = cfg.TestReader['dataset']
test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
dataset.set_images(test_images)
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
model = create(main_arch)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['TestReader']['inputs_def']
inputs_def['iterable'] = True
feed_vars, loader = model.build_inputs(**inputs_def)
test_fetches = model.test(feed_vars)
infer_prog = infer_prog.clone(True)
pruned_params = FLAGS.pruned_params
assert (
FLAGS.pruned_params is not None
), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params = FLAGS.pruned_params.strip().split(",")
logger.info("pruned params: {}".format(pruned_params))
pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
logger.info("pruned ratios: {}".format(pruned_ratios))
assert (len(pruned_params) == len(pruned_ratios)
), "The length of pruned params and pruned ratios should be equal."
assert (pruned_ratios > [0] * len(pruned_ratios) and
pruned_ratios < [1] * len(pruned_ratios)
), "The elements of pruned ratios should be in range (0, 1)."
base_flops = flops(infer_prog)
pruner = Pruner()
infer_prog, _, _ = pruner.prune(
infer_prog,
fluid.global_scope(),
params=pruned_params,
ratios=pruned_ratios,
place=place,
only_graph=True)
pruned_flops = flops(infer_prog)
logger.info("pruned FLOPS: {}".format(
float(base_flops - pruned_flops) / base_flops))
reader = create_reader(cfg.TestReader, devices_num=1)
loader.set_sample_list_generator(reader, place)
exe.run(startup_prog)
if cfg.weights:
checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)
# parse infer fetches
assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \
"unknown metric type {}".format(cfg.metric)
extra_keys = []
if cfg['metric'] in ['COCO', 'OID']:
extra_keys = ['im_info', 'im_id', 'im_shape']
if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE':
extra_keys = ['im_id', 'im_shape']
keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)
# parse dataset category
if cfg.metric == 'COCO':
from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
if cfg.metric == 'OID':
from ppdet.utils.oid_eval import bbox2out, get_category_info
if cfg.metric == "VOC":
from ppdet.utils.voc_eval import bbox2out, get_category_info
if cfg.metric == "WIDERFACE":
from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info
anno_file = dataset.get_anno()
with_background = dataset.with_background
use_default_label = dataset.use_default_label
clsid2catid, catid2name = get_category_info(anno_file, with_background,
use_default_label)
# whether output bbox is normalized in model output layer
is_bbox_normalized = False
if hasattr(model, 'is_bbox_normalized') and \
callable(model.is_bbox_normalized):
is_bbox_normalized = model.is_bbox_normalized()
imid2path = dataset.get_imid2path()
for iter_id, data in enumerate(loader()):
outs = exe.run(infer_prog,
feed=data,
fetch_list=values,
return_numpy=False)
res = {
k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(keys, outs)
}
logger.info('Infer iter {}'.format(iter_id))
bbox_results = None
mask_results = None
if 'bbox' in res:
bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
if 'mask' in res:
mask_results = mask2out([res], clsid2catid,
model.mask_head.resolution)
# visualize result
im_ids = res['im_id'][0]
for im_id in im_ids:
image_path = imid2path[int(im_id)]
image = Image.open(image_path).convert('RGB')
image = visualize_results(image,
int(im_id), catid2name,
FLAGS.draw_threshold, bbox_results,
mask_results)
save_name = get_save_image_name(FLAGS.output_dir, image_path)
logger.info("Detection bbox results save in {}".format(save_name))
image.save(save_name, quality=95)
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"--infer_dir",
type=str,
default=None,
help="Directory for images to perform inference on.")
parser.add_argument(
"--infer_img",
type=str,
default=None,
help="Image path, has higher priority over --infer_dir")
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output visualization files.")
parser.add_argument(
"--draw_threshold",
type=float,
default=0.5,
help="Threshold to reserve the result for visualization.")
parser.add_argument(
"-p",
"--pruned_params",
default=None,
type=str,
help="The parameters to be pruned when calculating sensitivities.")
parser.add_argument(
"--pruned_ratios",
default=None,
type=str,
help="The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS = parser.parse_args()
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册