未验证 提交 1d923973 编写于 作者: G Guanghua Yu 提交者: GitHub

add ssdlite_mbv1 (#595)

上级 b85c48e9
architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar
save_dir: output
weights: output/ssdlite_mobilenet_v1/model_final
num_classes: 81
SSD:
backbone: MobileNet
multi_box_head: SSDLiteMultiBoxHead
output_decoder:
background_label: 0
keep_top_k: 200
nms_eta: 1.0
nms_threshold: 0.45
nms_top_k: 400
score_threshold: 0.01
MobileNet:
norm_decay: 0.0
conv_group_scale: 1
extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
with_extra_blocks: true
SSDLiteMultiBoxHead:
aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
base_size: 300
steps: [16, 32, 64, 100, 150, 300]
flip: true
clip: true
max_ratio: 95
min_ratio: 20
offset: 0.5
conv_decay: 0.00004
LearningRate:
base_lr: 0.4
schedulers:
- !CosineDecay
max_iters: 400000
- !LinearWarmup
start_factor: 0.33333
steps: 2000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
TrainReader:
inputs_def:
image_shape: [3, 300, 300]
fields: ['image', 'gt_bbox', 'gt_class']
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_train2017.json
image_dir: train2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !RandomExpand
fill_value: [123.675, 116.28, 103.53]
- !RandomCrop
allow_no_crop: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 300
use_cv2: false
- !RandomFlipImage
is_normalized: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: true
batch_size: 64
shuffle: true
drop_last: true
# Number of working threads/processes. To speed up, can be set to 16 or 32 etc.
worker_num: 8
# Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`.
memsize: 8G
# Buffer size for multi threads/processes.one instance in buffer is one batch data.
# To speed up, can be set to 64 or 128 etc.
bufsize: 32
use_process: true
EvalReader:
inputs_def:
image_shape: [3, 300, 300]
fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id']
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 300
use_cv2: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 8
worker_num: 8
bufsize: 32
use_process: false
TestReader:
inputs_def:
image_shape: [3,300,300]
fields: ['image', 'im_id', 'im_shape']
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
sample_transforms:
- !DecodeImage
to_rgb: true
- !ResizeImage
interp: 1
max_size: 0
target_size: 300
use_cv2: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 1
......@@ -193,10 +193,11 @@ results of image size 608/416/320 above. Deformable conv is added on stage 5 of
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download | Configs |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: | :----: |
| MobileNet_v1 | 300 | 64 | 40w | - | 23.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v1.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v1.yml) |
| MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_small.yml) |
| MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_large.yml) |
**Notes:** MobileNet_v3-SSDLite is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train.
**Notes:** `SSDLite` is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train.
### SSD
......
......@@ -177,10 +177,11 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略|推理时间(fps) | Box AP | 下载 | 配置文件 |
| :----------: | :--: | :-----: | :-----: |:------------: |:----: | :-------: | :----: |
| MobileNet_v1 | 300 | 64 | 40w | - | 23.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v1.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v1.yml) |
| MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_small.yml) |
| MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_large.yml) |
**注意事项:** MobileNet_v3-SSDLite 使用学习率余弦衰减策略在8卡GPU下总batch size为512。
**注意事项:** SSDLite模型使用学习率余弦衰减策略在8卡GPU下总batch size为512。
### SSD
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册