diff --git a/configs/ssd/ssdlite_mobilenet_v1.yml b/configs/ssd/ssdlite_mobilenet_v1.yml new file mode 100644 index 0000000000000000000000000000000000000000..dea79a13a062cdb326118ed3ab517a0f3d06b775 --- /dev/null +++ b/configs/ssd/ssdlite_mobilenet_v1.yml @@ -0,0 +1,159 @@ +architecture: SSD +use_gpu: true +max_iters: 400000 +snapshot_iter: 20000 +log_smooth_window: 20 +log_iter: 20 +metric: COCO +pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar +save_dir: output +weights: output/ssdlite_mobilenet_v1/model_final +num_classes: 81 + +SSD: + backbone: MobileNet + multi_box_head: SSDLiteMultiBoxHead + output_decoder: + background_label: 0 + keep_top_k: 200 + nms_eta: 1.0 + nms_threshold: 0.45 + nms_top_k: 400 + score_threshold: 0.01 + +MobileNet: + norm_decay: 0.0 + conv_group_scale: 1 + extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]] + with_extra_blocks: true + +SSDLiteMultiBoxHead: + aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]] + base_size: 300 + steps: [16, 32, 64, 100, 150, 300] + flip: true + clip: true + max_ratio: 95 + min_ratio: 20 + offset: 0.5 + conv_decay: 0.00004 + +LearningRate: + base_lr: 0.4 + schedulers: + - !CosineDecay + max_iters: 400000 + - !LinearWarmup + start_factor: 0.33333 + steps: 2000 + +OptimizerBuilder: + optimizer: + momentum: 0.9 + type: Momentum + regularizer: + factor: 0.0005 + type: L2 + +TrainReader: + inputs_def: + image_shape: [3, 300, 300] + fields: ['image', 'gt_bbox', 'gt_class'] + dataset: + !COCODataSet + dataset_dir: dataset/coco + anno_path: annotations/instances_train2017.json + image_dir: train2017 + sample_transforms: + - !DecodeImage + to_rgb: true + - !RandomDistort + brightness_lower: 0.875 + brightness_upper: 1.125 + is_order: true + - !RandomExpand + fill_value: [123.675, 116.28, 103.53] + - !RandomCrop + allow_no_crop: false + - !NormalizeBox {} + - !ResizeImage + interp: 1 + target_size: 300 + use_cv2: false + - !RandomFlipImage + is_normalized: false + - !NormalizeImage + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + is_scale: true + is_channel_first: false + - !Permute + to_bgr: false + channel_first: true + batch_size: 64 + shuffle: true + drop_last: true + # Number of working threads/processes. To speed up, can be set to 16 or 32 etc. + worker_num: 8 + # Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`. + memsize: 8G + # Buffer size for multi threads/processes.one instance in buffer is one batch data. + # To speed up, can be set to 64 or 128 etc. + bufsize: 32 + use_process: true + + +EvalReader: + inputs_def: + image_shape: [3, 300, 300] + fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id'] + dataset: + !COCODataSet + dataset_dir: dataset/coco + anno_path: annotations/instances_val2017.json + image_dir: val2017 + sample_transforms: + - !DecodeImage + to_rgb: true + - !NormalizeBox {} + - !ResizeImage + interp: 1 + target_size: 300 + use_cv2: false + - !NormalizeImage + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + is_scale: true + is_channel_first: false + - !Permute + to_bgr: false + channel_first: True + batch_size: 8 + worker_num: 8 + bufsize: 32 + use_process: false + +TestReader: + inputs_def: + image_shape: [3,300,300] + fields: ['image', 'im_id', 'im_shape'] + dataset: + !ImageFolder + anno_path: annotations/instances_val2017.json + sample_transforms: + - !DecodeImage + to_rgb: true + - !ResizeImage + interp: 1 + max_size: 0 + target_size: 300 + use_cv2: false + - !NormalizeImage + mean: [0.485, 0.456, 0.406] + std: [0.229, 0.224, 0.225] + is_scale: true + is_channel_first: false + - !Permute + to_bgr: false + channel_first: True + batch_size: 1 diff --git a/docs/MODEL_ZOO.md b/docs/MODEL_ZOO.md index bcb13db4544c3210349bbd1ed5cc7752c9d6819b..87af31cd7aff10228a883e0c2ed74eb4c78ab355 100644 --- a/docs/MODEL_ZOO.md +++ b/docs/MODEL_ZOO.md @@ -193,10 +193,11 @@ results of image size 608/416/320 above. Deformable conv is added on stage 5 of | Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download | Configs | | :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: | :----: | +| MobileNet_v1 | 300 | 64 | 40w | - | 23.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v1.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v1.yml) | | MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_small.yml) | | MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_large.yml) | -**Notes:** MobileNet_v3-SSDLite is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train. +**Notes:** `SSDLite` is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train. ### SSD diff --git a/docs/MODEL_ZOO_cn.md b/docs/MODEL_ZOO_cn.md index 3ddc21ffc6604616c96424effa2fc28026e9219a..6e8e7d6ebec3ac11adb84f9eae4aa75cd3f6ff88 100644 --- a/docs/MODEL_ZOO_cn.md +++ b/docs/MODEL_ZOO_cn.md @@ -177,10 +177,11 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型 | 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略|推理时间(fps) | Box AP | 下载 | 配置文件 | | :----------: | :--: | :-----: | :-----: |:------------: |:----: | :-------: | :----: | +| MobileNet_v1 | 300 | 64 | 40w | - | 23.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v1.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v1.yml) | | MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_small.yml) | | MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_large.yml) | -**注意事项:** MobileNet_v3-SSDLite 使用学习率余弦衰减策略在8卡GPU下总batch size为512。 +**注意事项:** SSDLite模型使用学习率余弦衰减策略在8卡GPU下总batch size为512。 ### SSD